Mathematical Modeling of Ice Thrusting on the Shore of the Vistula Lagoon (Baltic Sea) and the Proposed Artificial Island - Publikacja - MOST Wiedzy

Wyszukiwarka

Mathematical Modeling of Ice Thrusting on the Shore of the Vistula Lagoon (Baltic Sea) and the Proposed Artificial Island

Abstrakt

Coastal lagoons are inland and shallow water bodies, separated from the ocean by a barrier. In cold regions, ice phenomena in shallow water coastal lagoons occur every winter season. Ice is predominantly formed on the surface due to density stratification and surface cooling. The ice dynamics in such areas are dominantly affected by winds. Water dynamics also cause ice movement, but due to the large areal scale of lagoons, the effect is usually limited to the direct vicinity of river estuaries. For open lagoons, which are connected to the sea by straits, tides will also cause significant movement of the ice inside the lagoon. Due to the limitation of ice outflow from a lagoon, ice fields will form ridges or hummocks on the shores. In this paper, the case of the Vistula Lagoon, located on the southern Baltic coast, is analyzed. Currently, the project of a new strait connecting the Baltic Sea with the Vistula Lagoon is in progress. As an effect of extensive dredging for the waterway to the port of Elblag, the material will be disposed of at a Confined Disposal Facility (CDF), which will form an artificial island. The island will be located on the western part of the lagoon, limiting the cross-section by about 20%. In consequence, ice cover pushed by winds blowing along the lagoon will create significant force action on the island banks. The DynaRICE mathematical model has been used to evaluate the ice dynamics and to determine the force produced by the ice on the coasts of the lagoon and the artificial island.

Cytowania

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 26 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Water nr 11,
ISSN: 2073-4441
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kolerski T., Zima P., Szydłowski M.: Mathematical Modeling of Ice Thrusting on the Shore of the Vistula Lagoon (Baltic Sea) and the Proposed Artificial Island// Water -Vol. 11,iss. 11 (2019), s.2297-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/w11112297
Bibliografia: test
  1. Kjerfve, B. Coastal Lagoons. In Elsevier Oceanography Series; otwiera się w nowej karcie
  2. Kjerfve, B., Ed.; Coastal Lagoon Processes; otwiera się w nowej karcie
  3. Chubarenko, B.; Margoński, P. The Vistula Lagoon. In Ecology of Baltic Coastal Waters; otwiera się w nowej karcie
  4. Schiewer, U., Ed.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2008; pp. 167-195, ISBN 978-3-540-73524-3.
  5. Kjerfve, B. Coastal Lagoons. In Elsevier Oceanography Series; otwiera się w nowej karcie
  6. Kjerfve, B., Ed.; Coastal Lagoon Processes; otwiera się w nowej karcie
  7. Chubarenko, B.; Margoński, P. The Vistula Lagoon. In Ecology of Baltic Coastal Waters; otwiera się w nowej karcie
  8. Schiewer, U., Ed.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2008; pp. 167-195. ISBN 978-3-540-73524-3.
  9. Kruk, M.; Kempa, M.; Tjomsland, T.; Durand, D. The use of mathematical models to predict changes in the environment of the Vistula Lagoon. In Vistula Lagoon-Natural Environment and Modern Methods of His Research Project on the Example of Visla; Publishing PWSZ: Elbląg, Poland, 2011; pp. 165-180.
  10. Nadolny, A.; Samulak, M. Construction of a Waterway Connecting the Vistula Lagoon with the Bay of Gdańsk;
  11. Maritime Office: Gdynia, Poland, 2017; pp. 1-14. otwiera się w nowej karcie
  12. Shen, H.T. Mathematical modeling of river ice processes. Cold Reg. Sci. Technol. 2010, 62, 3-13. [CrossRef] otwiera się w nowej karcie
  13. Girjatowicz, J.P. Ice thrusting and hummocking on the shores of the Southern Baltic Sea's coastal lagoons. J. Coast. Res. 2014, 30, 456-464. otwiera się w nowej karcie
  14. Girjatowicz, J.P. Ice Cover Atlas for Polish Baltic Coastal Waters, 2nd ed.; ZUT, Maritime Office: Szczecin, Poland, 1990. otwiera się w nowej karcie
  15. Girjatowicz, J.P. Ice condition in the Vistula Lagoon. Pol. Geogr. Rev. 1994, 66, 119-132.
  16. Herman, A. Ice cover of the Vistula Lagoon. In Vistula Lagoon; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2018; ISBN 978-83-01-19974-6. otwiera się w nowej karcie
  17. Chubarenko, B.; Chechko, V.; Kileso, A.; Krek, E.; Topchaya, V. Hydrological and sedimentation conditions in a non-tidal lagoon during ice coverage-The example of Vistula Lagoon in the Baltic Sea. Estuar. Coast. Shelf Sci. 2019, 216, 38-53. [CrossRef] otwiera się w nowej karcie
  18. Zhelezova, E.; Krek, E.; Chubarenko, B. Characteristics of the polynya in the Vistula Lagoon of the Baltic Sea by remote sensing data. Int. J. Remote Sens. 2018, 39, 9453-9464. [CrossRef] otwiera się w nowej karcie
  19. Jevrejeva, S.; Drabkin, V.V.; Kostjukov, J.; Lebedev, A.A.; Leppäranta, M.; Mironov, Y.U.; Schmelzer, N.; Sztobryn, M. Baltic Sea ice seasons in the twentieth century. Clim. Res. 2004, 25, 217-227. [CrossRef] otwiera się w nowej karcie
  20. Liu, L.; Li, H.; Shen, H.T. A two-dimensional comprehensive river ice model. In Proceedings of the 18th IAHR Symposium on River Ice, Sapporo, Japan, 28 August-1 September 2006.
  21. Szymkiewicz, R. A mathematical model of storm surge in the Vistula Lagoon, Poland. Coast. Eng. 1992, 16, 181-203. [CrossRef] otwiera się w nowej karcie
  22. Catewicz, Z.; Jankowski, A. Model H-N of stationary flows in Vistula Lagoon. Podstawy Gospodarki ẃ Srodowisku Morskim III. Studia i Materiały Oceanologiczne 1983, 40, 223-249.
  23. Szydlowski, M.; Kolerski, T.; Zima, P. Impact of the artificial strait in the vistula spit on the hydrodynamics of the Vistula Lagoon (Baltic Sea). Water 2019, 11, 990. [CrossRef] otwiera się w nowej karcie
  24. Chubarenko, B.V.; Chubarenko, I.P. Regionalization of river Pregel estuary and Russian part of Vistula Lagoon on hydrophysical parameters. In Proceedings of the International Conference on Regionalization in Hydrology, Braunschweig, Germany, 10-14 March 1997; pp. 41-44. otwiera się w nowej karcie
  25. Kwiatkowski, J.; Rasmussen, E.K.; Ezhova, E.; Chubarenko, B. The eutrophication model of the Vistula Lagoon. Oceanol. Stud. 1997, 26, 5-33.
  26. Chubarenko, I.; Tchepikova, I. Modelling of man-made contribution to salinity increase into the Vistula Lagoon (Baltic Sea). Ecol. Model. 2001, 138, 87-100. [CrossRef] otwiera się w nowej karcie
  27. Chubarenko, B.V.; Leitsina, L.V.; Esiukova, E.E.; Kurennoy, D.N. Model analysis of the currents and wind waves in the Vistula Lagoon of the Baltic Sea. Oceanology 2012, 52, 748-753. [CrossRef] otwiera się w nowej karcie
  28. Bielecka, M.; Kazmierski, J. A 3D mathematical model of Vistula Lagoon hydrodynamics-general assumptions and results of preliminary calculations. Ground Water 2003, 80, 2-4.
  29. Shen, H.T.; Liu, L. Shokotsu River ice jam formation. Cold Reg. Sci. Technol. 2003, 37, 35-49. [CrossRef] otwiera się w nowej karcie
  30. Shen, H.T. River Ice Processes. In Advances in Water Resources Management; Handbook of Environmental Engineering; Springer: Cham, Poland, 2016; pp. 483-530. ISBN 978-3-319-22923-2. otwiera się w nowej karcie
  31. Knack, I.M.; Shen, H.T. A numerical model study on Saint John River ice breakup. Can. J. Civ. Eng. 2016, 45, 817-826. [CrossRef] otwiera się w nowej karcie
  32. Shen, H.T.; Gao, L.; Kolerski, T.; Liu, L. Dynamics of Ice Jam Formation and Release. J. Coast. Res. 2008, 52, 25-32. [CrossRef] otwiera się w nowej karcie
  33. Kolerski, T.; Shen, H.T. Possible effects of the 1984 St. Clair River ice jam on bed changes. Can. J. Civ. Eng. 2015, 42, 696-703. [CrossRef] otwiera się w nowej karcie
  34. Knack, I.M.; Shen, H.T. Numerical modeling of ice transport in channels with river restoration structures. Can. J. Civ. Eng. 2017, 44, 813-819. [CrossRef] Water 2019, 11, 2297 16 of 16 otwiera się w nowej karcie
  35. Shen, H.T.; Lu, S.; Crissman, R.D. Numerical simulation of ice transport over the Lake Erie-Niagara River ice boom. Cold Reg. Sci. Technol. 1997, 26, 17-33. [CrossRef] otwiera się w nowej karcie
  36. Liu, L.; Shen, H.T. Numerical Simulation of River Ice Control with Booms; Engineer Research and Developemnt Center, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 2000; p. 38. otwiera się w nowej karcie
  37. Szydlowski, M.; Kolerski, T. Numerical Modeling of Water and Ice Dynamics for Analysis of Flow Around the Kiezmark Bridge Piers. In Free Surface Flows and Transport Processes; Springer: Cham, Poland, 2018; pp. 465-476. otwiera się w nowej karcie
  38. Kolerski, T.; Shen, H.T.; Knack, I.M. A nested model for river Ice dynamics. In Proceedings of the 20th IAHR Ice Symposium, Lahti, Finland, 14-18 June 2010.
  39. Kolerski, T.; Shen, H.T. Ice Modeling for HIP in the Upper Niagara River. In Progress Report submitted to Gomez and Sullivan Engineers, PC; Clarkson University: Potsdam, NY, USA, 2008.
  40. Kolerski, T.; Shen, H.T.; Kioka, S. A numerical model study on ice boom in a coastal lake. J. Coast. Res. 2013, 291, 177-186. [CrossRef] otwiera się w nowej karcie
  41. Shen, H.T.; Su, J.; Liu, L. SPH simulation of river ice dynamics. J. Comput. Phys. 2000, 165, 752-770. [CrossRef] otwiera się w nowej karcie
  42. Ji, S.; Shen, H.T.; Wang, Z.; Shen, H.H.; Yue, Q. A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics. Acta Oceanol. Sin. 2005, 24, 54.
  43. Wu, J. Prediction of near-surface drift currents from wind velocity. J. Hydraul. Div. 1973, 99, 1291-1302. otwiera się w nowej karcie
  44. Liu, L.; Shen, H.T. A Two-Dimensional Characteristic Upwind Finite Element Method for Transitional Open Channel Flow; Clarkson University: Potsdam, NY, USA, 2003; p. 54. otwiera się w nowej karcie
  45. Kolerski, T. Mathematical modeling of ice dynamics as a decision support tool in river engineering. Water 2018, 10, 1241. [CrossRef] otwiera się w nowej karcie
  46. Girjatowicz, J.P. Forms of onshore ice thrusting in coastal lagoons of the southern Baltic Sea. J. Cold Reg. Eng. 2014, 29, 04014008. [CrossRef] otwiera się w nowej karcie
  47. Szymkiewicz, R. Hydrodynamics of Vistula Lagoon; Polish Academy of Sciences: Warsaw, Poland, 1992. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 153 razy

Publikacje, które mogą cię zainteresować

Meta Tagi