Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography - Publikacja - MOST Wiedzy

Wyszukiwarka

Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography

Abstrakt

In this paper, a condition assessment of masonry pillars is presented. Non-destructive tests were performed on an intact pillar as well as three pillars with internal inclusions in the form of a hole, a steel bar grouted by gypsum mortar, and a steel bar grouted by cement mortar. The inspection utilized ultrasonic stress waves and the reconstruction of the velocity distribution was performed by means of computed tomography. The results showed the possibilities of tomographic imaging in characterizing the internal structure of pillars. Particular attention was paid to the assessment of the adhesive connection between a steel reinforcing bar, embedded inside pillars, and the surrounding pillar body.

Cytowania

  • 4 0

    CrossRef

  • 0

    Web of Science

  • 4 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 57 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Materials nr 11, wydanie 12, strony 1 - 16,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Zielińska M., Rucka M.: Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography// Materials. -Vol. 11, iss. 12 (2018), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma11122543
Bibliografia: test
  1. Rucka; Validation, Magdalena Rucka;
  2. Visualization, Monika Zielińska; Writing -original draft, Monika Zielińska; Writing -review and editing, Magdalena Rucka.
  3. Binda, L.; Saisi, A.; Tiraboschi, C. Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. 2000, 14, 199-233, doi:10.1016/S0950-0618(00)00018-0. otwiera się w nowej karcie
  4. Piroglu, F.; Ozakgul, K. Site investigation of masonry buildings damaged during the 23 October and 9 November 2011 Van Earthquakes in Turkey. Nat. Hazards Earth Syst. Sci. 2013, 13, 689-708, doi:10.5194/nhess-13-689-2013. otwiera się w nowej karcie
  5. Jasiński, R.; Drobiec, Ł. Comparison Research of Bed Joints Construction and Bed Joints Reinforcement on Shear Parameters of AAC Masonry Walls. J. Civ. Eng. Archit. 2016, 10, 1329-1343, doi:10.17265/1934-7359/2016.12.004. otwiera się w nowej karcie
  6. Vasanelli, E.; Sileo, M.; Leucci, G.; Calia, A.; Aiello, M.A.; Micelli, F. Mechanical characterization of building stones through DT and NDT tests: research of correlations for the in situ analysis of ancient masonry. Key Eng. Mater. 2015, 628, 85-89, doi:10.4028/www.scientific.net/KEM.628.85. otwiera się w nowej karcie
  7. McCann, D.M.; Forde, M.C. Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 2001, 34, 71-84, doi:10.1016/S0963-8695(00)00032-3. otwiera się w nowej karcie
  8. Schuller, M.P. Nondestructive testing and damage assessment of masonry structures. 2003, 239-251, doi:10.1002/pse.160. otwiera się w nowej karcie
  9. Paasche, H.; Wendrich, A.; Tronicke, J.; Trela, C. Detecting voids in masonry by cooperatively inverting P-wave and georadar traveltimes. 2008, 5, 256-267, doi:10.1088/1742-2132/5/3/002. otwiera się w nowej karcie
  10. Bosiljkov, V.; Uranjek, M.; Žarnić, R.; Bokan-Bosiljkov, V. An integrated diagnostic approach for the assessment of historic masonry structures. J. Cult. Herit. 2010, 11, 239-249, doi:10.1016/j.culher.2009.11.007. otwiera się w nowej karcie
  11. Santos-Assunçao, S.; Perez-Gracia, V.; Caselles, O.; Clapes, J.; Salinas, V. Assessment of complex masonry structures with GPR compared to other non-destructive testing studies. Remote Sens. 2014, 6, 8220-8237, doi:10.3390/rs6098220. otwiera się w nowej karcie
  12. Khan, F.; Rajaram, S.; Vanniamparambil, P.A.; Bolhassani, M.; Hamid, A.; Kontsos, A.; Bartoli, I. Multi-sensing NDT for damage assessment of concrete masonry walls. Struct. Control Heal. Monit. 2015, 22, 449-462, doi:10.1002/stc. otwiera się w nowej karcie
  13. Micelli, F.; Cascardi, A.; Marsano, M. Seismic strengthening of a theatre masonry building by using active FRP wires. In Brick and Block Masonry: Proceedings of the 16th International Brick and Block Masonry Conference; CRC Press: Padova, 2016; pp. 753-761. otwiera się w nowej karcie
  14. La Mendola, L.; Lo Giudice, E.; Minafò, G. Experimental calibration of flat jacks for in-situ testing of masonry. Int. J. Archit. Herit. 2018, doi:10.1080/15583058.2018.1453886. otwiera się w nowej karcie
  15. Rucka, M.; Lachowicz, J.; Zielińska, M. GPR investigation of the strengthening system of a historic masonry tower. J. Appl. Geophys. 2016, 131, 94-102, doi:10.1016/j.jappgeo.2016.05.014. otwiera się w nowej karcie
  16. Lachowicz, J.; Rucka, M. Diagnostics of pillars in St. Mary's Church (Gdańsk, Poland) using the GPR method. Int. J. Archit. Herit. 2018, 00, 1-11, doi:10.1080/15583058.2018.1501117. otwiera się w nowej karcie
  17. Paganoni, S.; D'Ayala, D. Testing and design procedure for corner connections of masonry heritage buildings strengthened by metallic grouted anchors. Eng. Struct. 2014, 70, 278-293, doi:10.1016/j.engstruct.2014.03.014. otwiera się w nowej karcie
  18. Collini, L.; Fagiani, R.; Garziera, R.; Riabova, K.; Vanali, M. Load and effectiveness of the tie-rods of an ancient Dome: Technical and historical aspects. J. Cult. Herit. 2015, 16, 597-601, doi:10.1016/j.culher.2014.09.008. otwiera się w nowej karcie
  19. Ural, A.; Firat, F.K.; Tuğrulelçi, S.; Kara, M.E. Experimental and numerical study on effectiveness of various tie-rod systems in brick arches. Eng. Struct. 2016, 110, 209-221, doi:10.1016/j.engstruct.2015.11.038. otwiera się w nowej karcie
  20. Pisani, M.A. Theoretical approach to the evaluation of the load-carrying capacity of the tie rod anchor system in a masonry wall. Eng. Struct. 2016, 124, 85-95, doi:10.1016/j.engstruct.2016.06.015. otwiera się w nowej karcie
  21. Ombres, L.; Verre, S. Masonry columns strengthened with Steel Fabric Reinforced Cementitious Matrix (S-FRCM) jackets: Experimental and numerical analysis. Measurement 2018, 127, 238-245, doi:10.1016/j.measurement.2018.05.114. otwiera się w nowej karcie
  22. Micelli F., Cascardi A., A.M.A. A study on FRP-confined concrete in presence of different preload levels. In Proceedings of 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering -CICE 2018; 2018; pp. 493-499.
  23. Ferrotto, M.F.; Fischer, O.; Cavaleri, L.A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload. Eng. Struct. 2018, 173, 1054-1067, doi:10.1016/j.engstruct.2018.07.047. otwiera się w nowej karcie
  24. Rao, J.; Ratassepp, M.; Lisevych, D.; Hamzah Caffoor, M.; Fan, Z. On-Line Corrosion Monitoring of Plate Structures Based on Guided Wave Tomography Using Piezoelectric Sensors. Sensors 2017, 17, 2882, doi:10.3390/s17122882. otwiera się w nowej karcie
  25. Zhao, X.; Royer, R.L.; Owens, S.E.; Rose, J.L. Ultrasonic Lamb wave tomography in structural health monitoring. Smart Mater. Struct. 2011, 20, 105002, doi:10.1088/0964-1726/20/10/105002. otwiera się w nowej karcie
  26. Leonard, K.R.; Malyarenko, E.V.; Hinders, M.K. Ultrasonic Lamb wave tomography. Inverse Probl. 2002, 18, 1795-1808, doi:10.1088/0266-5611/18/6/322. otwiera się w nowej karcie
  27. Prasad, S.M.; Balasubramaniam, K.; Krishnamurthy, C.V. Structural health monitoring of composite structures using Lamb wave tomography. Smart Mater. Struct. 2004, 13, N73-N79, doi:10.1088/0964-1726/13/5/N01. otwiera się w nowej karcie
  28. Martin, J.; Broughton, K.J.; Giannopolous, A.; Hardy, M.S.A.; Forde, M.C. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. NDT E Int. 2001, 34, 107-113, doi:10.1016/S0963-8695(00)00035-9. otwiera się w nowej karcie
  29. Chai, H.K.; Liu, K.F.; Behnia, A.; Yoshikazu, K.; Shiotani, T. Development of a tomography technique for assessment of the material condition of concrete using optimized elastic wave parameters. Materials (Basel). 2016, 9, 291, doi:10.3390/ma9040291. otwiera się w nowej karcie
  30. Chai, H.K.; Momoki, S.; Kobayashi, Y.; Aggelis, D.G.; Shiotani, T. Tomographic reconstruction for concrete using attenuation of ultrasound. NDT E Int. 2011, 44, 206-215, doi:10.1016/j.ndteint.2010.11.003. otwiera się w nowej karcie
  31. Aggelis, D.G.; Tsimpris, N.; Chai, H.K.; Shiotani, T.; Kobayashi, Y. Numerical simulation of elastic waves for visualization of defects. Constr. Build. Mater. 2011, 25, 1503-1512, doi:10.1016/j.conbuildmat.2010.08.008. otwiera się w nowej karcie
  32. Schabowicz, K.; Suvorov, V.A. Nondestructive testing of a bottom surface and construction of its profile by ultrasonic tomography. Russ. J. Nondestruct. Test. 2014, 50, 109-119, doi:10.1134/S1061830914020089. otwiera się w nowej karcie
  33. Schabowicz, K. Ultrasonic tomography -The latest nondestructive technique for testing concrete members -Description, test methodology, application example. Arch. Civ. Mech. Eng. 2014, 14, 295-303, doi:10.1016/j.acme.2013.10.006. otwiera się w nowej karcie
  34. Haach, V.G.; Ramirez, F.C. Qualitative assessment of concrete by ultrasound tomography. Constr. Build. Mater. 2016, 119, 61-70, doi:10.1016/j.conbuildmat.2016.05.056. otwiera się w nowej karcie
  35. Choi, H.; Popovics, J.S. NDE application of ultrasonic tomography to a full-scale concrete structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1076-1085, doi:10.1109/TUFFC.2014.006962. otwiera się w nowej karcie
  36. Choi, H.; Ham, Y.; Popovics, J.S. Integrated visualization for reinforced concrete using ultrasonic tomography and image-based 3-D reconstruction. Constr. Build. Mater. 2016, 123, 384-393, doi:10.1016/j.conbuildmat.2016.07.010. otwiera się w nowej karcie
  37. Schullerl, M.; Berra, M.; Atkinson, R.; Binda, L. Acoustic tomography for evaluation of unreinforced masonry. Constr. Build. Makrials 1997, 11, 199-204. otwiera się w nowej karcie
  38. Binda, L.; Saisi, A.; Zanzi, L. Sonic tomography and flat-jack tests as complementary investigation procedures for the stone pillars of the temple of S. Nicolo 1'Arena (Italy). NDT E Int. 2003, 36, 215-227, doi:10.1016/S0963-8695(02)00066-X. otwiera się w nowej karcie
  39. Pérez-Gracia, V.; Caselles, J.O.; Clapés, J.; Martinez, G.; Osorio, R. Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures. NDT E Int. 2013, 59, 40-47, doi:10.1016/j.ndteint.2013.04.014. otwiera się w nowej karcie
  40. Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; The Institiute of Electrical and Electronics Engineers, Inc.: New York, 1988; otwiera się w nowej karcie
  41. Oliveira, E.F.; Dantas, C.C.; Vasconcelos, D.A.A.; Cadiz, F. Comparison Among Tomographic Reconstruction Algorithms With a Limited Data. Int. Nucl. Atl. Conf. -Ina. 2011.
  42. Lu, X.; Sun, Q.; Feng, W.; Tian, J. Evaluation of dynamic modulus of elasticity of concrete using impact-echo method. Constr. Build. Mater. 2013, 47, 231-239, doi:10.1016/j.conbuildmat.2013.04.043. otwiera się w nowej karcie
  43. Wȩglewski, W.; Bochenek, K.; Basista, M.; Schubert, T.; Jehring, U.; Litniewski, J.; Mackiewicz, S. Comparative assessment of Young's modulus measurements of metal-ceramic composites using mechanical and non-destructive tests and micro-CT based computational modeling. Comput. Mater. Sci. 2013, 77, 19-30, doi:10.1016/j.commatsci.2013.04.007. otwiera się w nowej karcie
  44. Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete. Constr. Build. Mater. 2018, 181, 447-454, doi:10.1016/j.conbuildmat.2018.06.060. otwiera się w nowej karcie
  45. Alberto, A.; Antonaci, P.; Valente, S. Damage analysis of brick-to-mortar interfaces. Procedia Eng. 2011, 10, 1151-1156, doi:10.1016/j.proeng.2011.04.191. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 169 razy

Publikacje, które mogą cię zainteresować

Meta Tagi