Particle Swarm Optimization Based Optimal Design of Six-Phase Induction Motor for Electric Propulsion of Submarines - Publikacja - MOST Wiedzy

Wyszukiwarka

Particle Swarm Optimization Based Optimal Design of Six-Phase Induction Motor for Electric Propulsion of Submarines

Abstrakt

Recent research reveals that multi-phase motors in electric propulsion systems are highly recommended due to their improved reliability and efficiency over traditional three phase motors. This research presented a comparison of optimal model design of a six phase squirrel cage induction motor (IM) for electric propulsion by using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). A six phase squirrel cage induction motor is designed and simulated by ANSYS Motor-CAD. In order to find the best fit method, simulation results are compared and applied to the motors for electric propulsion, considering the influence of design upon the motor performance. The six-phase squirrel cage induction motor is more energy efficient, reliable and cost effective for the electric propulsion compared to the conventional three phase motor. In this study, first the initial parameters of the six phase squirrel cage induction motor have been determined and then these parameters have been compared with optimized values by Genetic Algorithm (GA) and PSO optimization. The motor designed is optimized using efficiency and power losses as the fitness function. The six phase squirrel cage induction motor is designed using ANSYS Motor-CAD and the simulation results were also presented along with two-dimensional and three-dimensional geometry. The result shows that the weight and power loss are reduced to 161 kg and 0.9359 Kw respectively, while the efficiency and power factor are increased to 0.95 and 0.87 respectively when PSO is used. This shows that the result is promising.

Cytowania

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Autorzy (6)

  • Zdjęcie użytkownika  Amruth Thelkar

    Amruth Thelkar

  • Zdjęcie użytkownika  Tesfabirhan Tahiro

    Tesfabirhan Tahiro

  • Zdjęcie użytkownika  Shabana Urooj

    Shabana Urooj

  • Zdjęcie użytkownika PhD student at Gdansk University Tadele Ayana

    Tadele Ayana PhD student at Gdansk University

  • Zdjęcie użytkownika  Samia Larguech

    Samia Larguech

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Inna publikacyjna praca zbiorowa (w tym materiały konferencyjne)
Typ:
Inna publikacyjna praca zbiorowa (w tym materiały konferencyjne)
Rok wydania:
2022
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/en15092994
Weryfikacja:
Brak weryfikacji

wyświetlono 83 razy

Publikacje, które mogą cię zainteresować

Meta Tagi