Abstrakt
Gesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types of hand poses, differing in the number of fingers joined together, were investigated. The reflected light intensity pattern originated by hand located closely to the sensor was parameterized into 14 features. The change of reflection pattern originated by hand dislocation was reduced by application of two variable functions in the first of the methods. A one and two hidden layers topologies were considered in the neural network related approach. Both methods were designed with the use of a training set of samples and validated with another (testing) set. The results present the average poses recognition rate of 81.19% for Gaussian distribution fitting and 90.02% for ANN based method.
Cytowania
-
1 2
CrossRef
-
0
Web of Science
-
1 4
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- materiały konferencyjne indeksowane w Web of Science
- Tytuł wydania:
- 2017 10th International Conference on Human System Interactions (HSI) strony 18 - 24
- Język:
- angielski
- Rok wydania:
- 2017
- Opis bibliograficzny:
- Czuszyński K., Rumiński J., Wtorek J..: Pose classification in the gesture recognition using the linear optical sensor, W: 2017 10th International Conference on Human System Interactions (HSI), 2017, ,.
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/hsi.2017.8004989
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 118 razy