Abstrakt
Recent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work, a generalization of the MIMO approach is applied to the task of object detection using the general-purpose Faster R-CNN model. It was shown that using the MIMO framework allows building strong feature representation and obtains very competitive accuracy when using just two input/output pairs. Furthermore, it adds just 0.5% additional model parameters and increases the inference time by 15.9% when compared to the standard Faster R-CNN. It also works comparably to or outperforms the Deep Ensemble approach in terms of model accuracy, robustness to out-of-distribution setting, and uncertainty calibration when the same number of predictions is used. This work opens up avenues for applying the MIMO approach in other high-level tasks such as semantic segmentation and depth estimation.
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Cygert S., Czyżewski A.: Robust Object Detection with Multi-input Multi-output Faster R-CNN// / : , 2022,
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 85 razy