Abstrakt
Exemplar-Free Class Incremental Learning (EFCIL) tackles the problem of training a model on a sequence of tasks without access to past data. Existing state-of-the-art methods represent classes as Gaussian distributions in the feature extractor's latent space, enabling Bayes classification or training the classifier by replaying pseudo features. However, we identify two critical issues that compromise their efficacy when the feature extractor is updated on incremental tasks. First, they do not consider that classes' covariance matrices change and must be adapted after each task. Second, they are susceptible to a task-recency bias caused by dimensionality collapse occurring during training. In this work, we propose AdaGauss - a novel method that adapts covariance matrices from task to task and mitigates the task-recency bias owing to the additional anti-collapse loss function. AdaGauss yields state-of-the-art results on popular EFCIL benchmarks and datasets when training from scratch or starting from a pre-trained backbone.
Autorzy (4)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Rypeść G., Cygert S., Trzciński T., Twardowski B.: Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning// / : , 2024,
- Źródła finansowania:
-
- Ze środków IDEAS NCBR
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 2 razy
Publikacje, które mogą cię zainteresować
MagMax: Leveraging Model Merging for Seamless Continual Learning
- D. Marczak,
- B. Twardowski,
- T. Trzciński
- + 1 autorów
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
- S. R. Gupte,
- D. S. Jain,
- A. Srinivasan
- + 1 autorów
Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free Continual Learning
- F. Szatkowski,
- M. Pyła,
- M. Przewięźlikowski
- + 3 autorów