The complexity of minimum-length path decompositions - Publikacja - MOST Wiedzy

Wyszukiwarka

The complexity of minimum-length path decompositions

Abstrakt

We consider a bi-criteria generalization of the pathwidth problem, where, for given integers k, l and a graph G, we ask whether there exists a path decomposition P of G such that the width of P is at most k and the number of bags in P, i.e., the length of P, is at most l. We provide a complete complexity classification of the problem in terms of k and l for general graphs. Contrary to the original pathwidth problem, which is fixed-parameter tractable with respect to k, we prove that the generalized problem is NP-complete for any fixed k >= 4, and is also NP-complete for any fixed l >= 2. On the other hand, we give a polynomial-time algorithm that, for any (possibly disconnected) graph G and integers k <= 3 and l > 0, constructs a path decomposition of width at most k and length at most l, if any exists. As a by-product, we obtain an almost complete classification of the problem in terms of k and l for connected graphs. Namely, the problem is NP-complete for any fixed k >= 5 and it is polynomial-time for any k <= 3. This leaves open the case k = 4 for connected graphs.

Cytowania

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Autorzy (3)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF COMPUTER AND SYSTEM SCIENCES nr 81, wydanie 8, strony 1715 - 1747,
ISSN: 0022-0000
Język:
angielski
Rok wydania:
2015
Opis bibliograficzny:
Dereniowski D., Kubiak W., Zwols Y.: The complexity of minimum-length path decompositions// JOURNAL OF COMPUTER AND SYSTEM SCIENCES. -Vol. 81, iss. 8 (2015), s.1715-1747
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jcss.2015.06.011
Weryfikacja:
Politechnika Gdańska

wyświetlono 109 razy

Publikacje, które mogą cię zainteresować

Meta Tagi