The impact of environmentally friendly refrigerants on heat pump efficiency - Publikacja - MOST Wiedzy

Wyszukiwarka

The impact of environmentally friendly refrigerants on heat pump efficiency

Abstrakt

This paper discusses the issue of heat pump simulation. Lower operating costs can be achieved through good equipment design and appropriate operation. Detailed technical and economic analysis inform the selection of system components with the highest possible efficiency and lower energy demand. The use of systems based on environmentally friendly refrigerants can deliver long product life, which is associated with a shorter payback period for the investment. In addition, smart design processes optimize the performance of equipment. The rapidly increasing share of energy costs in terms of total investment cost is driving innovative solutions and tailor-made solutions to specific operating conditions.

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Journal of Power Technologies nr 99, wydanie 1, strony 40 - 48,
ISSN: 2083-4187
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Muszyński T., Andrzejczyk R., Jakubowska B.: The impact of environmentally friendly refrigerants on heat pump efficiency// Journal of Power Technologies. -Vol. 99., iss. 1 (2019), s.40-48
Bibliografia: test
  1. T. Bohdal, H. Charun, M. Sikora, Empirical study of heterogeneous refrigerant condensation in pipe minichannels, International Journal of Refrigeration 59 (2015) 210 -223. otwiera się w nowej karcie
  2. M. Job, L. Bartela, A. Skorek-Osikowska, Analysis of the use of waste heat in an oxy-combustion power plant to replace steam cycle heat regeneration, Journal of Power Technologies 93 (3).
  3. T. Muszynski, Design and experimental investigations of a cylindri- cal microjet heat exchanger for waste heat recovery systems, Applied Thermal Engineering (115) (2017) 782 -792. otwiera się w nowej karcie
  4. C. Kowalczyk, R. M. Rolf, B. Kowalczyka, K. Badyda, Mathematical model of combined heat and power plant using gatecycle tm software, Journal of Power Technologies 95 (3) (2015) 183 -191.
  5. D. Mikielewicz, B. Jakubowska, Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional chan- nels, Archives of Thermodynamics 37 (2) (2016) 89 -106. otwiera się w nowej karcie
  6. T. Muszynski, D. Mikielewicz, Comparison of heat transfer character- istics in surface cooling with boiling microjets of water, ethanol and hfe7100, Applied Thermal Engineering 93 (2016) 1403 -1409. otwiera się w nowej karcie
  7. D. Mikielewicz, R. Andrzejczyk, B. Jakubowska, J. Mikielewicz, An- alytical model with nonadiabatic effects for pressure drop and heat transfer during boiling and condensation flows in conventional chan- nels and minichannels, Heat Transfer Engineering 37 (13-14) (2016) 1158-1171. otwiera się w nowej karcie
  8. T. Muszynski, R. Andrzejczyk, Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers, Applied Thermal Engineering 100 (2016) 105 -113. otwiera się w nowej karcie
  9. T. Muszynski, R. Andrzejczyk, Heat transfer characteristics of hybrid microjet -microchannel cooling module, Applied Thermal Engineering 93 (2016) 1360 -1366. otwiera się w nowej karcie
  10. R. Andrzejczyk, T. Muszynski, C. A. Dorao, Experimental investigations on adiabatic frictional pressure drops of r134a during flow in 5 mm diameter channel, Experimental Thermal and Fluid Science 83 (2017) 78 -87. otwiera się w nowej karcie
  11. M. M. Shah, A new correlation for heat transfer during boiling flow through pipes, ASHRAE transactions 82 (1976) 66 -86. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 176 razy

Publikacje, które mogą cię zainteresować

Meta Tagi