Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative - Publikacja - MOST Wiedzy

Wyszukiwarka

Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative

Abstrakt

Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation of a novel 4-thiouracil derivative of unlocked nucleic acid (UNA), as well as single incorporation of 4-thiouridine and all four canonical UNAs, was evaluated. The studies presented herein have shown that 4-thiouridine in RNA and UNA series, as well as all four canonical UNAs, can efficiently modulate G-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G-quadruplex anticoagulant properties. Noteworthy, some TBA variants, characterized by decreased ability to inhibit thrombin activity, possess significant antiproliferative properties reducing the viability of the HeLa cell line even by 95% at 10 μM concentration.

Cytowania

  • 4 4

    CrossRef

  • 0

    Web of Science

  • 4 3

    Scopus

Autorzy (6)

  • Zdjęcie użytkownika dr Weronika Kotkowiak

    Weronika Kotkowiak dr

    • Instytut Chemii Bioorganicznej Polskiej Akademii Nauk Zakład Bioinżynierii Kwasów Nukleinowych
  • Zdjęcie użytkownika dr Jolanta Lisowiec-Wachnicka

    Jolanta Lisowiec-Wachnicka dr

    • Instytut Chemii Bioorganicznej Polskiej Akademii Nauk Zakład Bioinżynierii Kwasów Nukleinowych
  • Zdjęcie użytkownika prof. dr hab. Ryszard Kierzek

    Ryszard Kierzek prof. dr hab.

    • Instytut Chemii Bioorganicznej Polskiej Akademii Nauk Zakład Chemii i Biologii Strukturalnej Kwasów Nukleinowych
  • Zdjęcie użytkownika doktor Jesper Wengel

    Jesper Wengel doktor

    • University of Southern Denmark Department of Physics, Chemistry and Pharmacy
  • Zdjęcie użytkownika dr hab. Anna Pasternak

    Anna Pasternak dr hab.

    • Instytut Chemii Bioorganicznej Polskiej Akademii Nauk Zakład Bioinżynierii Kwasów Nukleinowych

Cytuj jako

Pełna treść

pobierz publikację
pobrano 25 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Molecular Therapy-Nucleic Acids nr 10, strony 304 - 316,
ISSN: 2162-2531
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kotkowiak W., Lisowiec-Wachnicka J., Grynda J., Kierzek R., Wengel J., Pasternak A.: Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative// Molecular Therapy-Nucleic Acids. -Vol. 10, (2018), s.304-316
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.omtn.2017.12.013
Bibliografia: test
  1. Goodchild, J. (2011). Therapeutic oligonucleotides. Methods Mol. Biol. 764, 1-15. otwiera się w nowej karcie
  2. Woodruff, R.S., and Sullenger, B.A. (2015). Modulation of the coagulation cascade using aptamers. Arterioscler. Thromb. Vasc. Biol. 35, 2083-2091. otwiera się w nowej karcie
  3. Santosh, B., and Yadava, P.K. (2014). Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. BioMed Res. Int. 2014, 540451. otwiera się w nowej karcie
  4. Hamula, C.L.A., Guthrie, J.W., Zhang, H., Li, X.-F., and Le, X.C. (2006). Selection and analytical applications of aptamers. Trends Analyt. Chem. 25, 681-691. otwiera się w nowej karcie
  5. Agyei, D., Acquah, C., Tan, K.X., Hii, H.K., Rajendran, S.R.C.K., Udenigwe, C.C., and Danquah, M.K. (2018). Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food. Anal. Bioanal. Chem. 410, 297-306. otwiera się w nowej karcie
  6. Yang, K.-A., Pei, R., and Stojanovic, M.N. (2016). In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods 106, 58-65. otwiera się w nowej karcie
  7. Wang, H., Cheng, H., Wang, J., Xu, L., Chen, H., and Pei, R. (2016). Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II). Talanta 154, 498-503. otwiera się w nowej karcie
  8. Darmostuk, M., Rimpelova, S., Gbelcova, H., and Ruml, T. (2015). Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 33, 1141-1161. otwiera się w nowej karcie
  9. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., and Toole, J.J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564-566. otwiera się w nowej karcie
  10. Nagatoishi, S., Tanaka, Y., and Tsumoto, K. (2007). Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem. Biophys. Res. Commun. 352, 812-817. otwiera się w nowej karcie
  11. Zhao, D., Dong, X., Jiang, N., Zhang, D., and Liu, C. (2014). Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes. Nucleic Acids Res. 42, 11612-11621. otwiera się w nowej karcie
  12. Avino, A., Fabrega, C., Tintore, M., and Eritja, R. (2012). Thrombin binding aptamer, more than a simple aptamer: chemically modified derivatives and biomedical appli- cations. Curr. Pharm. Des. 18, 2036-2047. otwiera się w nowej karcie
  13. Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A., and Feigon, J. (1993). Thrombin- binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. USA 90, 3745-3749. otwiera się w nowej karcie
  14. Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S., and Bolton, P.H. (1993). A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 32, 1899-1904. otwiera się w nowej karcie
  15. Wang, K.Y., Krawczyk, S.H., Bischofberger, N., Swaminathan, S., and Bolton, P.H. (1993). The tertiary structure of a DNA aptamer which binds to and inhibits thrombin determines activity. Biochemistry 32, 11285-11292. otwiera się w nowej karcie
  16. Padmanabhan, K., and Tulinsky, A. (1996). An ambiguous structure of a DNA 15-mer thrombin complex. Acta Crystallogr. D Biol. Crystallogr. 52, 272-282. otwiera się w nowej karcie
  17. Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., and Sica, F. (2011). Thrombin-aptamer recognition: a revealed ambiguity. Nucleic Acids Res. 39, 7858-7867. otwiera się w nowej karcie
  18. Pica, A., Russo Krauss, I., Merlino, A., Nagatoishi, S., Sugimoto, N., and Sica, F. (2013). Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer. FEBS J. 280, 6581-6588. otwiera się w nowej karcie
  19. Schwienhorst, A. (2006). Direct thrombin inhibitors-a survey of recent develop- ments. Cell. Mol. Life Sci. 63, 2773-2791. otwiera się w nowej karcie
  20. Mendelboum Raviv, S., Horváth, A., Aradi, J., Bagoly, Z., Fazakas, F., Batta, Z., Muszbek, L., and Hársfalvi, J. (2008). 4-Thio-deoxyuridylate-modified thrombin aptamer and its inhibitory effect on fibrin clot formation, platelet aggregation and thrombus growth on subendothelial matrix. J. Thromb. Haemost. 6, 1764-1771. otwiera się w nowej karcie
  21. Bonifacio, L., Church, F.C., and Jarstfer, M.B. (2008). Effect of locked-nucleic acid on a biologically active g-quadruplex. A structure-activity relationship of the thrombin aptamer. Int. J. Mol. Sci. 9, 422-433. otwiera się w nowej karcie
  22. Pasternak, A., Hernandez, F.J., Rasmussen, L.M., Vester, B., and Wengel, J. (2011). Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer. Nucleic Acids Res. 39, 1155-1164. otwiera się w nowej karcie
  23. Jensen, T.B., Henriksen, J.R., Rasmussen, B.E., Rasmussen, L.M., Andresen, T.L., Wengel, J., and Pasternak, A. (2011). Thermodynamic and biological evaluation of a thrombin binding aptamer modified with several unlocked nucleic acid (UNA) monomers and a 2 0 -C-piperazino-UNA monomer. Bioorg. Med. Chem. 19, 4739- 4745. otwiera się w nowej karcie
  24. Nallagatla, S.R., Heuberger, B., Haque, A., and Switzer, C. (2009). Combinatorial synthesis of thrombin-binding aptamers containing iso-guanine. J. Comb. Chem. 11, 364-369. otwiera się w nowej karcie
  25. Saccà, B., Lacroix, L., and Mergny, J.L. (2005). The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides. Nucleic Acids Res. 33, 1182-1192. otwiera się w nowej karcie
  26. Zaitseva, M., Kaluzhny, D., Shchyolkina, A., Borisova, O., Smirnov, I., and Pozmogova, G. (2010). Conformation and thermostability of oligonucleotide d(GGTTGGTGTGGTTGG) containing thiophosphoryl internucleotide bonds at different positions. Biophys. Chem. 146, 1-6. otwiera się w nowej karcie
  27. Martino, L., Virno, A., Randazzo, A., Virgilio, A., Esposito, V., Giancola, C., Bucci, M., Cirino, G., and Mayol, L. (2006). A new modified thrombin binding aptamer contain- ing a 5 0 -5 0 inversion of polarity site. Nucleic Acids Res. 34, 6653-6662. otwiera się w nowej karcie
  28. Pagano, B., Martino, L., Randazzo, A., and Giancola, C. (2008). Stability and binding properties of a modified thrombin binding aptamer. Biophys. J. 94, 562-569. otwiera się w nowej karcie
  29. Esposito, V., Scuotto, M., Capuozzo, A., Santamaria, R., Varra, M., Mayol, L., Virgilio, A., and Galeone, A. (2014). A straightforward modification in the thrombin binding aptamer improving the stability, affinity to thrombin and nuclease resistance. Org. Biomol. Chem. 12, 8840-8843. otwiera się w nowej karcie
  30. Smirnov, I., and Shafer, R.H. (2000). Effect of loop sequence and size on DNA aptamer stability. Biochemistry 39, 1462-1468. otwiera się w nowej karcie
  31. Scuotto, M., Rivieccio, E., Varone, A., Corda, D., Bucci, M., Vellecco, V., Cirino, G., Virgilio, A., Esposito, V., Galeone, A., et al. (2015). Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative. Nucleic Acids Res. 43, 7702-7716. otwiera się w nowej karcie
  32. Martin, S.R., and Schilstra, M.J. (2008). Circular dichroism and its application to the study of biomolecules. Methods Cell Biol. 84, 263-293. otwiera się w nowej karcie
  33. Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K., and Neidle, S. (2006). Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402-5415. otwiera się w nowej karcie
  34. Tang, C.F., and Shafer, R.H. (2006). Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadru- plexes. J. Am. Chem. Soc. 128, 5966-5973. otwiera się w nowej karcie
  35. Mergny, J.L., Li, J., Lacroix, L., Amrane, S., and Chaires, J.B. (2005). Thermal differ- ence spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 33, e138. www.moleculartherapy.org Molecular Therapy: Nucleic Acids Vol. 10 March 2018 otwiera się w nowej karcie
  36. Kelly, J.A., Feigon, J., and Yeates, T.O. (1996). Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 256, 417-422. otwiera się w nowej karcie
  37. Coppola, T., Varra, M., Oliviero, G., Galeone, A., D'Isa, G., Mayol, L., Morelli, E., Bucci, M.R., Vellecco, V., Cirino, G., and Borbone, N. (2008). Synthesis, structural studies and biological properties of new TBA analogues containing an acyclic nucle- otide. Bioorg. Med. Chem. 16, 8244-8253. otwiera się w nowej karcie
  38. Borbone, N., Bucci, M., Oliviero, G., Morelli, E., Amato, J., D'Atri, V., D'Errico, S., Vellecco, V., Cirino, G., Piccialli, G., et al. (2012). Investigating the role of T7 and T12 residues on the biological properties of thrombin-binding aptamer: enhance- ment of anticoagulant activity by a single nucleobase modification. J. Med. Chem. 55, 10716-10728. otwiera się w nowej karcie
  39. Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E., and Tulinsky, A. (1993). The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem. 268, 17651-17654. otwiera się w nowej karcie
  40. Schultze, P., Macaya, R.F., and Feigon, J. (1994). Three-dimensional solution struc- ture of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 235, 1532-1547. otwiera się w nowej karcie
  41. Tarkanyi, I., Horváth, A., Szatmari, I., Eizert, H., Vámosi, G., Damjanovich, S., Ségal- Bendirdjian, E., and Aradi, J. (2005). Inhibition of human telomerase by oligonucleotide chimeras, composed of an antisense moiety and a chemically modified homo-oligonu- cleotide. FEBS Lett. 579, 1411-1416. otwiera się w nowej karcie
  42. Horváth, A., Tokés, S., Hartman, T., Watson, K., Turpin, J.A., Buckheit, R.W., Jr., Sebestyén, Z., Szöllosi, J., Benko, I., Bardos, T.J., et al. (2005). Potent inhibition of HIV-1 entry by (s4dU)35. Virology 334, 214-223. otwiera się w nowej karcie
  43. Huntington, J.A. (2008). Structural insights into the life history of thrombin. In Recent Advances in Thrombosis and Hemostasis, K. Tanaka, E.W. Davie, Y. Ikeda, S. Iwanaga, H. Saito, and K. Sueishi, eds. (Springer Japan), pp. 80-106. otwiera się w nowej karcie
  44. Coppens, M., Eikelboom, J.W., Gustafsson, D., Weitz, J.I., and Hirsh, J. (2012). Translational success stories: development of direct thrombin inhibitors. Circ. Res. 111, 920-929. otwiera się w nowej karcie
  45. Crawley, J.T., Zanardelli, S., Chion, C.K., and Lane, D.A. (2007). The central role of thrombin in hemostasis. J. Thromb. Haemost. 5 (Suppl 1 ), 95-101. otwiera się w nowej karcie
  46. Patching, S.G. (2014). Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta 1838 (1 Pt A), 43-55. otwiera się w nowej karcie
  47. Bates, P.J., Laber, D.A., Miller, D.M., Thomas, S.D., and Trent, J.O. (2009). Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 86, 151-164. otwiera się w nowej karcie
  48. Choi, E.W., Nayak, L.V., and Bates, P.J. (2010). Cancer-selective antiproliferative activity is a general property of some G-rich oligodeoxynucleotides. Nucleic Acids Res. 38, 1623-1635. otwiera się w nowej karcie
  49. Varizhuk, A.M., Tsvetkov, V.B., Tatarinova, O.N., Kaluzhny, D.N., Florentiev, V.L., Timofeev, E.N., Shchyolkina, A.K., Borisova, O.F., Smirnov, I.P., Grokhovsky, S.L., et al. (2013). Synthesis, characterization and in vitro activity of thrombin-binding DNA aptamers with triazole internucleotide linkages. Eur. J. Med. Chem. 67, 90-97. otwiera się w nowej karcie
  50. Agarwal, T., Kumar, S., and Maiti, S. (2011). Unlocking G-quadruplex: effect of unlocked nucleic acid on G-quadruplex stability. Biochimie 93, 1694-1700. otwiera się w nowej karcie
  51. Yang, X., Fennewald, S., Luxon, B.A., Aronson, J., Herzog, N.K., and Gorenstein, D.G. (1999). Aptamers containing thymidine 3 0 -O-phosphorodithioates: synthesis and binding to nuclear factor-kappaB. Bioorg. Med. Chem. Lett. 9, 3357-3362. otwiera się w nowej karcie
  52. Zandarashvili, L., Nguyen, D., Anderson, K.M., White, M.A., Gorenstein, D.G., and Iwahara, J. (2015). Entropic enhancement of protein-DNA affinity by oxygen-to-sul- fur substitution in DNA phosphate. Biophys. J. 109, 1026-1037. otwiera się w nowej karcie
  53. Langkjaer, N., Pasternak, A., and Wengel, J. (2009). UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg. Med. Chem. 17, 5420-5425. otwiera się w nowej karcie
  54. McBride, L.J., and Caruthers, M.H. (1983). An investigation of several deoxynucleo- side phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett. 24, 245-248. otwiera się w nowej karcie
  55. Kotkowiak, W., Kotkowiak, M., Kierzek, R., and Pasternak, A. (2014). Unlocked nucleic acids: implications of increased conformational flexibility for RNA/DNA triplex formation. Biochem. J. 464, 203-211. otwiera się w nowej karcie
  56. Lopez-Gomollon, S., and Nicolas, F.E. (2013). Purification of DNA oligos by dena- turing polyacrylamide gel electrophoresis (PAGE). Methods Enzymol. 529, 65-83. otwiera się w nowej karcie
  57. Borer, P.N. (1975). Optical properties of nucleic acids, absorption and circular dichroism spectra. In Handbook of Biochemistry and Molecular Biology: Nucleic Acids, Third Edition, G.D. Fasman, ed. (CRC Press), pp. 589-595.
Weryfikacja:
Politechnika Gdańska

wyświetlono 133 razy

Publikacje, które mogą cię zainteresować

Meta Tagi