Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance - Publikacja - MOST Wiedzy

Wyszukiwarka

Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance

Abstrakt

Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.

Cytowania

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Autorzy (13)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 94 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Scientific Reports nr 9, strony 1 - 14,
ISSN: 2045-2322
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Saboo K., Varatharajah Y., Berry B., Kremen V., Sperling M., Davis K., Jobst B., Gross R., Lega B., Sheth S., Worrell G., Iyer R., Kucewicz M. T.: Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance// Scientific Reports -Vol. 9, (2019), s.1-14
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-019-53925-5
Bibliografia: test
  1. Engel, A. K. et al. Invasive recordings from the human brain: clinical insights and beyond. Nature Reviews Neuroscience 6(1), 35 (2005). otwiera się w nowej karcie
  2. Lhatoo, S D., Kahane, P. & Lüders, H. O. (Eds). Invasive Studies of the Human Epileptic Brain: Principles and Practice. Oxford University Press (2018). otwiera się w nowej karcie
  3. Kucewicz, M. T. et al. Dissecting gamma frequency activity during human memory processing. Brain 140(5), 1337-1350 (2017). otwiera się w nowej karcie
  4. Kucewicz, M. T. et al. Human verbal memory encoding is hierarchically distributed in a continuous processing stream. ENeuro 6.1: ENEURO-0214 (2019). otwiera się w nowej karcie
  5. Lee, S. A. et al. Electrophysiological signatures of spatial boundaries in the human subiculum. Journal of Neuroscience 38(13), 3265-3272 (2018). otwiera się w nowej karcie
  6. Blakely, T. M. et al. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface. Brain- Computer Interfaces 1.3-4, 147-157 (2014). otwiera się w nowej karcie
  7. Burke, J. F. et al. Brain computer interface to enhance episodic memory in human participants. Frontiers in Human Neuroscience 8, 1-10 (2015). otwiera się w nowej karcie
  8. Merzagora, A. R. et al. Repeated stimuli elicit diminished high-gamma electrocorticographic responses. Neuroimage 85, 844-852 (2014).
  9. Henin, S. et al. Hippocampal gamma predicts associative memory performance as measured by acute and chronic intracranial EEG. Scientific Reports 9(1), 593 (2019). otwiera się w nowej karcie
  10. Düzel, E., Will, D. P. & Burgess, N. Brain oscillations and memory. Current Opinion in Neurobiology 20(2), 143-149 (2010). otwiera się w nowej karcie
  11. Siegel, M., Tobias, H. D. & Andreas, K. E. Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience 13(2), 121-134 (2012). otwiera się w nowej karcie
  12. Buzsáki, G. Rhythms of the Brain. Oxford University Press (2006). otwiera się w nowej karcie
  13. Duun-Henriksen, J. et al. Channel selection for automatic seizure detection. Clinical Neurophysiology 123(1), 84-92 (2012). otwiera się w nowej karcie
  14. Varatharajah, Y. et al. Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy. Journal of Neural Engineering 15(4), 046035 (2018). otwiera się w nowej karcie
  15. Glassman, E L. & John V. G. Reducing the number of channels for an ambulatory patient-specific EEG-based epileptic seizure detector by applying recursive feature elimination. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2175-2178 (2006). otwiera się w nowej karcie
  16. Zimbric, M. R. et al. Three-channel electroencephalogram montage in neonatal seizure detection and quantification. Pediatric Neurology 44(1), 31-34 (2011). otwiera się w nowej karcie
  17. Lal, T. N. et al. Methods towards invasive human brain computer interfaces. Advances in Neural Information Processing Systems, 737-744 (2005). otwiera się w nowej karcie
  18. Ansari-Asl, K., Guillaume, C. & Thierry, P. A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. 15th European Signal Processing Conference, 2007. IEEE, 1241-1245 (2007).
  19. Kremen, V. et al. Behavioral state classification in epileptic brain using intracranial electrophysiology. Journal of Neural Engineering 14(2), 026001 (2017). otwiera się w nowej karcie
  20. Kremen, V. et al. Automated unsupervised behavioral state classification using intracranial electrophysiology. Journal of Neural Engineering 16(2), 026004 (2019). otwiera się w nowej karcie
  21. Lan, T. et al. Channel selection and feature projection for cognitive load estimation using ambulatory EEG. Computational Intelligence and Neuroscience 2007(74895), 12 (2007). otwiera się w nowej karcie
  22. Schröder, M. et al. Robust EEG channel selection across subjects for brain-computer interfaces. EURASIP Journal on Applied Signal Processing 2005, 3103-3112 (2005). otwiera się w nowej karcie
  23. Wei, Q. et al. Channel selection for optimizing feature extraction in an electrocorticogram-based brain-computer interface. Journal of Clinical Neurophysiology 27(5), 321-327 (2010). otwiera się w nowej karcie
  24. Yang, J. et al. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artificial Intelligence in Medicine 55(2), 117-126 (2012). otwiera się w nowej karcie
  25. Alotaiby, T. et al. A review of channel selection algorithms for EEG signal processing. EURASIP Journal on Advances in Signal Processing 2015(1), 1-21 (2015). otwiera się w nowej karcie
  26. Zhao, H. B. et al. Channel selection and feature extraction of ECoG-based brain-computer interface using band power. Applied Mechanics and Materials. Vol. 44: 3564-3568. Trans Tech Publications (2011). otwiera się w nowej karcie
  27. Cimbalnik, J., Michal, T. K. & Worrell, G. Interictal high-frequency oscillations in focal human epilepsy. Current Opinion in Neurology 29(2), 175-81 (2016). otwiera się w nowej karcie
  28. Fell, J. et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience 4(12), 1259-64 (2001). otwiera się w nowej karcie
  29. Binder, J. R. et al. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex 19(12), 2767-2796 (2009). otwiera się w nowej karcie
  30. Ojemann, G. A. Cortical organization of language. Journal of Neuroscience 11(8), 2281-2287 (1991). otwiera się w nowej karcie
  31. Restoring Active Memory (RAM), RAM Public Data Release. Available, http://memory.psych.upenn.edu/RAM (2017). otwiera się w nowej karcie
  32. Kucewicz, M. T. et al. Electrical stimulation modulates high γ activity and human memory performance. ENeuro 5.1: ENEURO-0369 (2018). otwiera się w nowej karcie
  33. Kahana, M J. Foundations of Human Memory. Oxford University Press (2012).
  34. Kucewicz, M. T. et al. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 137(8), 2231-2244 (2014). otwiera się w nowej karcie
  35. Burke, J. F. et al. Human intracranial high-frequency activity maps episodic memory formation in space and time. Neuroimage 85, 834-843 (2014). otwiera się w nowej karcie
  36. Ray, S. et al. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. The Journal of Neuroscience 28(45), 11526-11536 (2008). otwiera się w nowej karcie
  37. Rich, E. L. & Wallis, J. D. Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma. Nature Communications 8, 1139 (2017). otwiera się w nowej karcie
  38. Watson, B. O., Ding, M. & Buzsaki, G. Temporal coupling of field potentials and action potentials in the neocortex. European Journal of Neuroscience 48(7), 2482-2497 (2018). otwiera się w nowej karcie
  39. Logothetis, N. K. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150-157 (2001). otwiera się w nowej karcie
  40. Jonathan, D. C & Kung-Sik, C Time series analysis with applications in R. SpringerLink, Springer eBooks (2008).
  41. Buzsáki, G. & da Silva, F. L. High frequency oscillations in the intact brain. Progress in Neurobiology 98(3), 241-249 (2012). otwiera się w nowej karcie
  42. Jorgenson, L. A. et al. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1668), 20140164 (2015). otwiera się w nowej karcie
  43. Ezzyat, Y. et al. Direct brain stimulation modulates encoding states and memory performance in humans. Current Biology 27(9), 1251-1258 (2017). otwiera się w nowej karcie
  44. Solomon, E. A. et al. Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition. Nature. Communications 8(1), 1704 (2017). otwiera się w nowej karcie
  45. Bahramisharif, A. et al. Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biology 16(8), e2003805 (2018). otwiera się w nowej karcie
  46. Saboo, K, et al. A computationally-efficient model for predicting successful memory encoding using machine-learning-based channel selection. 9 th International IEEE/EMBS Conference on Neural Engineering (2019). otwiera się w nowej karcie
  47. Lachaux, J. -P. et al. A quantitative study of gamma-band activity in human intracranial recordings triggered by visual stimuli. European Journal of Neuroscience 12(7), 2608-2622 (2000). otwiera się w nowej karcie
  48. Jacobs, J. & Michael, J. K. Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity. Journal of Neuroscience 29(33), 10203-10214 (2009). otwiera się w nowej karcie
  49. Hermes, D., Nguyen, M. & Winawer, J. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biology 15(7), e2001461 (2017). otwiera się w nowej karcie
  50. Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. Journal of Neuroscience 27(9), 2424-2432 (2007). otwiera się w nowej karcie
  51. Aoki, F. et al. Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clinical Neurophysiology 110(3), 524-537 (1999). otwiera się w nowej karcie
  52. Miller, K. J. et al. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proceedings of the National Academy of Sciences 107(9), 4430-4435 (2010). otwiera się w nowej karcie
  53. Lachaux, J.-P. et al. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Progress in neurobiology 98(3), 279-301 (2012). otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 165 razy

Publikacje, które mogą cię zainteresować

Meta Tagi