Filtry
wszystkich: 8
Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (8)
Wyniki wyszukiwania dla: RANDOM HAMILTONIAN
-
Zespół Katedry Analizy Nieliniowej i Statystyki
Potencjał BadawczyW Katedrze prowadzone są badania w trzech wiodących kierunkach. Pierwszy dotyczy zastosowania metod topologicznych i wariacyjnych w układach dynamicznych, w teorii równań różniczkowych zwyczajnych i cząstkowych oraz w teorii bifurkacji. Drugim kierunkiem badań Katedry jest zastosowanie rachunku prawdopodobieństwa i teorii aproksymacji. Ostatnią specjalizacją jest Geometria i Grafika Komputerowa, która istnieje od 2014 roku. Wybór...
-
Zespół Katedry Fizyki Teoretycznej i Informatyki Kwantowej
Potencjał BadawczyPrace naukowe prowadzone w Katedrze dotyczą współczesnych zagadnień fizyki teoretycznej i informatyki kwantowej. W ramach współpracy międzynarodowej stworzony został w Katedrze program komputerowy umożliwiający obliczanie relatywistycznych przejść w atomach i jonach. Jego celem jest dostarczenie danych atomowych potrzebnych do interpretacji pomiarów plazmy astrofizycznej i laboratoryjnej. Dane atomowe obejmują nie tylko siły oscylatorów...
-
Zespół Katedry Rachunku Prawdopodobieństwa i Biomatematyki
Potencjał Badawczy* modele ryzyka i ich zastosowania * probabilistyczne i grafowe metody w biologii * stochastyczne równania różniczkowe * statystyczna analiza danych * teoria grafów * teoria i zastosowania stochastycznych układów dynamicznych w biologii i medycynie
Pozostałe wyniki Pokaż wszystkie wyniki (1)
Wyniki wyszukiwania dla: RANDOM HAMILTONIAN
-
Convergence to equilibrium under a random Hamiltonian
PublikacjaWe analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first...