Dane badawcze
Filtry
wszystkich: 66
Katalog Danych Badawczych
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
Ball on disk test AT4_11-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT4_11).
-
Ball on disk test AT3_21-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT3_21).
-
Ball on disk test AW4_1-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 WC powder injected (AW4_1).