GRAPHS AND COMBINATORICS - Czasopismo - MOST Wiedzy

Wyszukiwarka

Graphs and combinatorics

SHERPA RoMEO status:

Zielony Pomoc
Pre-print
wersja autorska artykułu przed recenzją
Post-print
wersja autorska artykułu po recenzji

Tabela statusów SHERPA RoMEO

Tabela statusów SHERPA RoMEO
SHERPA RoMEO kolor Polityka archiwizacji
Zielony można archiwizować pre-printy i post-printy lub wersję wydawcy
Niebieski can archive post-prints
Żółty można archiwizować pre-printy
Biały nie można archiwizować żadnych materiałów
Szary brak danych

ISSN: 0911-0119

Współczynnik Impact Factor

Zaloguj się aby zobaczyć Współczynnik Impact Factor dla tego czasopisma

Punkty Ministerialne

Punkty Ministerialne
Lista Rok Punkty
A 2017 20
A 2016 20
A 2015 15
A 2014 15
A 2013 15
A 2011 15
A 2008 20

Filtry

wszystkich: 6

  • Kategoria
  • Rok
  • Opcje

Katalog Czasopism

2018
  • Dynamic F-free Coloring of Graphs
    Publikacja

    - GRAPHS AND COMBINATORICS - 2018

    A problem of graph F-free coloring consists in partitioning the vertex set of a graph such that none of the resulting sets induces a graph containing a fixed graph F as an induced subgraph. In this paper we consider dynamic F-free coloring in which, similarly as in online coloring, the graph to be colored is not known in advance; it is gradually revealed to the coloring algorithm that has to color each vertex upon request as well...

    Pełny tekst w serwisie zewnętrznym

  • Total Domination Versus Domination in Cubic Graphs

    A dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...

    Pełny tekst w portalu

2015
  • The Backbone Coloring Problem for Bipartite Backbones

    Let G be a simple graph, H be its spanning subgraph and λ≥2 be an integer. By a λ -backbone coloring of G with backbone H we mean any function c that assigns positive integers to vertices of G in such a way that |c(u)−c(v)|≥1 for each edge uv∈E(G) and |c(u)−c(v)|≥λ for each edge uv∈E(H) . The λ -backbone chromatic number BBCλ(G,H) is the smallest integer k such that there exists a λ -backbone coloring c of G with backbone H satisfying...

    Pełny tekst w serwisie zewnętrznym

2014
2008

wyświetlono 51 razy