ISSN:
Dyscypliny:
- architektura i urbanistyka (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria chemiczna (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria lądowa, geodezja i transport (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria środowiska, górnictwo i energetyka (Dziedzina nauk inżynieryjno-technicznych)
- biologia medyczna (Dziedzina nauk medycznych i nauk o zdrowiu)
- nauki farmaceutyczne (Dziedzina nauk medycznych i nauk o zdrowiu)
- rolnictwo i ogrodnictwo (Dziedzina nauk rolniczych)
- biotechnologia (Dziedzina nauk ścisłych i przyrodniczych)
- nauki chemiczne (Dziedzina nauk ścisłych i przyrodniczych)
Punkty Ministerialne: Pomoc
Rok | Punkty | Lista |
---|---|---|
Rok 2024 | 100 | Ministerialna lista czasopism punktowanych 2024 |
Rok | Punkty | Lista |
---|---|---|
2024 | 100 | Ministerialna lista czasopism punktowanych 2024 |
2023 | 100 | Lista ministerialna czasopism punktowanych 2023 |
2022 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
2021 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
2020 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
2019 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
Model czasopisma:
Punkty CiteScore:
Rok | Punkty |
---|---|
Rok 2023 | 10.7 |
Rok | Punkty |
---|---|
2023 | 10.7 |
2022 | 9.7 |
2021 | 7.2 |
2020 | 5.2 |
2019 | 4.8 |
2018 | 5.3 |
2017 | 5 |
2016 | 3.4 |
2015 | 1.4 |
2014 | 0.2 |
Impact Factor:
Sherpa Romeo:
Prace opublikowane w tym czasopiśmie
Filtry
wszystkich: 8
Katalog Czasopism
Rok 2024
Rok 2023
-
A comprehensive approach to SBR modelling for monitoring and control system design
PublikacjaThe aim of this research is to provide a comprehensive description of the Sequencing Batch Reactor (SBR) modelling for monitoring, control, and plant operational optimisation validation. The paper provides a detailed modelling of the SBR, its components and constituent processes. For this purpose, the mass balance principle and continuity equations were provided with a reactive term implemented using Activated Sludge Model (ASM)....
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublikacjaThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
Anthropogenic trace metals in Setiu Wetland: Spatial and seasonal distribution and implications for environmental health
PublikacjaThe growing urban wastewater volume poses a major global environmental challenge, especially in developing nations where inadequate treatment and discharge impact clean water availability. This study focused on Setiu Wetland, aiming to analyze seasonal and spatial variations of trace metals in particulate form from anthropogenic and pathogenic sources. Surface water samples were collected from multiple stations, measuring physical...
-
Stochastic optimisation algorithm for optimisation of controller parameters for control of dissolved oxygen in wastewater treatment plant
PublikacjaWastewater treatment plants (WWTPs) are very important facilities for mankind. They enable the removal and neutralisation of man-made pollutants. Therefore, it is important for wastewater treatment plants to operate as efficiently as possible so that the level of pollutants in the treated wastewater meets specific requirements. This paper concerns the design of a hierarchical nonlinear adaptive control system for dissolved oxygen...
Rok 2022
Rok 2021
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublikacjaWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
Rok 2020
wyświetlono 1804 razy