HRV and BPV indices in differentiating OSA patients from healthy controls - Open Research Data - MOST Wiedzy

Wyszukiwarka

HRV and BPV indices in differentiating OSA patients from healthy controls

Opis

The various HRV and BPV indices computed for the purpose of the analyses described in the paper “Differentiating patients with obstructive sleep apnea from healthy controls based on heart rate–blood pressure coupling quantified by entropy-based indices” by P. Pilarczyk, G. Graff, J.M. Amigó, K. Tessmer, K. Narkiewicz, and B. Graff.

The paper was published in Chaos 33 (2023), 103140. DOI: 10.1063/5.0158923. See also arXiv:2311.10752.

If you use this data in your research, please, cite the paper.

Each row in the CSV file corresponds to data for one person.

The first ten columns in the CSV file contain the following data:
1. Classification of the person: OSA – a patient suffering from obstructive sleep apnea, CON – a healthy individual (control).
2. Duration of the processed recording (in seconds).
3. Number of R peaks detected in the ECG data.
4. Number of R peaks chosen for the analysis (which excludes outliers and other artifacts).
5. Minimum length of an RR interval considered.
6. Maximum length of an RR interval considered.
7. Number of systolic blood pressure (BP peaks) in the data.
8. Number of BP peaks chosen for the analysis (which excludes outliers and other artifacts).
9. Minimum value of BP peak considered.
10. Maximum value of BP peak considered.

The columns that follow contain the values of indices computed for each patient, as described in the paper. The columns with labels ending with “_bad%” indicate the percentage of sequences excluded from the computation of the corresponding indices based on ordinal patterns due to the fact that any of the sequences in use would contain an artifact.

This research was supported by the National Science Centre, Poland, within the following grants: SHENG 2018/30/Q/ST1/00228 (G. Graff), OPUS 2021/41/B/ST1/00405 (P. Pilarczyk), and MAESTRO 2011/02/A/NZ5/00329 (B. Graff and K. Narkiewicz). J. M. Amigó was financially supported by Agencia Estatal de Investigación, Spain, Grant No. PID2019-108654GB-I00/AEI/10.13039/501100011033 and by Generalitat Valenciana, Spain, Grant PROMETEO/2021/063. G. Graff and K. Tessmer were also supported by Gdańsk University of Technology grant Neptunium Excellence Initiative—Research University, DEC−2/2021/IDUB/II. Computations were carried out using the computers of Centre of Informatics Tricity Academic Supercomputer and Network.

Plik z danymi badawczymi

DATA.csv
95.2 kB, S3 ETag 8a139e6ba39f5e586e759eff7a3f0385-1, pobrań: 31
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5

Informacje szczegółowe o pliku

Licencja:
Creative Commons: 0 1.0 otwiera się w nowej karcie
CC 0
Przekazanie do Domeny Publicznej

Informacje szczegółowe

Rok publikacji:
2023
Data zatwierdzenia:
2024-09-25
Data wytworzenia:
2023
Język danych badawczych:
angielski
Dyscypliny:
  • matematyka (Dziedzina nauk ścisłych i przyrodniczych)
  • nauki fizyczne (Dziedzina nauk ścisłych i przyrodniczych)
  • nauki medyczne (Dziedzina nauk medycznych i nauk o zdrowiu)
DOI:
Identyfikator DOI 10.34808/h62n-py28 otwiera się w nowej karcie
Seria:
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Powiązane zasoby

Cytuj jako

wyświetlono 80 razy