Minimal number of periodic points for smooth self-maps of simply-connected manifolds - Open Research Data - MOST Wiedzy

Wyszukiwarka

Minimal number of periodic points for smooth self-maps of simply-connected manifolds

Opis

The problem of finding the minimal number of periodic points in a given class of self-maps of a space is one of the central questions in periodic point theory. We consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant D_r[f] is equal to the minimal number of r-periodic points in the smooth homotopy class of f. In our analysis we assume that r is odd and all coefficients b(k) of so-called periodic expansion of Lefschetz numbers of iterations are non-zero for all k dividing r and different from 1. We provide the values of the simplified version of the invariant: D_r[f](mod 1) (which is equal either D_r[f] or  D_r[f]+1) for all odd r between 1 and 2000 and for manifolds of dimension 4,5,6,7,8,9,10,11,12,13. Our results are based on the combinatorial scheme for computing D_r[f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84, https://doi.org/10.1007/s11784-012-0076-1].  The data consists of 5 files dim4_5.txt, dim6_7.txt, dim8_9.txt, dim10_11.txt, dim12_13.txt each of which contains 1000 pairs, where the first place stands for r and the second is the value of the invariant D_r[f](mod 1).

Plik z danymi badawczymi

Dr[f]_dim4-13.zip
12.7 kB, S3 ETag db9b8e85ea2630ee33f642a87f335522-1, pobrań: 60
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
pobierz plik Dr[f]_dim4-13.zip

Informacje szczegółowe o pliku

Licencja:
Creative Commons: by 4.0 otwiera się w nowej karcie
CC BY
Uznanie autorstwa

Informacje szczegółowe

Rok publikacji:
2020
Data zatwierdzenia:
2020-12-17
Data wytworzenia:
2020
Język danych badawczych:
angielski
Dyscypliny:
  • matematyka (Dziedzina nauk ścisłych i przyrodniczych)
DOI:
Identyfikator DOI 10.34808/c655-7984 otwiera się w nowej karcie
Finansowanie:
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Powiązane zasoby

Cytuj jako

wyświetlono 216 razy