Nonlinear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured with impedance spectroscopy method at low temperature region - Open Research Data - MOST Wiedzy

Wyszukiwarka

Nonlinear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured with impedance spectroscopy method at low temperature region

Opis

The nonlinear electrical properties of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured by impedance spectroscopy method. 

Bi2VO5.5 ceramic was prepared using two step synthesis:

In the first step, the polycrystalline Bi2VO5.5 ceramic was synthesised via a conventional solid state reaction route. The stoichiometric mixture of initial powders of Bi2O3 and V2O5 were ball-milled in pure acetone for 6 h. The milling was performed in steps of 1 h with rest intervals of 10 min. The mixture was initially heated up to 770 K and then to 1020 K in air. It was kept at this temperature for 24 h and grinded next. The calcined powder was mixed with a small amount of ethyl alcohol binder and cold-pressed into pellets (12 mm in diameter and 2–3 mmin thickness) under a compacting pressure of 26 kNcm−2. The obtained pellets were sintered at 1070 K for 24 h with heating and cooling rates of 50 Kh−1.

In the second step, the obtained Bi2VO5.5 was powdered in mortar and next melted using the conventional melt quenching technique. The melting was conducted in alumina crucibles at 1173 K for few minutes. The melt was poured onto a preheated (573 K) brass plate and pressed by another plate to obtain flat circular disks.

For the electrical measurements gold electrodes were evaporated at the preheated samples. Impedance measurements were carried out in the temperature range from 153 K to 423 K, frequency range of 10 mHz to 1MHz, with the ac voltage of 1 Vrms with Concept 40 broadband dielectric spectrometer. The higher harmonic components (harmonic 1 and 2) were measured up to frequency of 1000 Hz. Here the impedance for harmonic components was defined as the ratio of the voltage base wave to the n-th harmonic current component: Zn∗= U0∗/In∗, where Zn⁎ including the base wave generally depend on the sample voltage U1⁎ base wave amplitude. From Zn⁎ allother independent variables are calculated. The dependence of current density on the cosinusoidal electric field E(t)= E0cos(ωt) leads to the following expression:

j´ = σ´0hE0 cos (ωt) + σ´1hE0 cos (2ωt) + σ´2hE0 cos (3ωt) + …
Where σ´0h denotes base conductivity, while σ´1h, σ´2h etc. are higher harmonics conductivity. The admittivity for harmonic components with n ≥1, is calculated from relation σ⁎n = i2πfε0ε⁎n.

Plik z danymi badawczymi

104.zip
452.9 kB, S3 ETag 6c96812d4624c2478b36c6402f9b7f06-1, pobrań: 4
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
pobierz plik 104.zip

Informacje szczegółowe o pliku

Licencja:
Creative Commons: by 4.0 otwiera się w nowej karcie
CC BY
Uznanie autorstwa
Dane surowe:
Dane zawarte w datasecie nie zostały w żaden sposób przetworzone.

Informacje szczegółowe

Rok publikacji:
2015
Data zatwierdzenia:
2021-07-14
Język danych badawczych:
angielski
Dyscypliny:
  • inżynieria materiałowa (Dziedzina nauk inżynieryjno-technicznych)
DOI:
Identyfikator DOI 10.34808/zss1-x178 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Powiązane zasoby

Cytuj jako

wyświetlono 36 razy