Opis
Schubert calculus is the intersection theory of 19th century. Justifying this calculus is the content of the 15th problem of Hilbert. In the course to establish the foundation of algebraic geometry, Van der Vaerden and A. Weil attributed the problem to the determination of the chow ring of flag manifolds G/P, where G is a compact Lie group and P is a parabolic subgroup. This problem has been solved by Borel for the classical Lie groups, and by Duan and Zhao for all compact Lie groups see [H. Duan, Xuezhi Zhao, On Schubert's Problem of Characteristics, to appear in Springer proceedings in Mathematics & Statistics, arXiv:1912.10745].
This databset is created to record the preliminary data to formulate the Chow rings of the flag manifolds associated to the exceptional Lie groups G=G2, F4, E6, E7, which are generated by a general algorithm (i.e. applicable to all flag manifolds) illustrated in the paper of Duan and Zhao mentioned above.
Each filename begins with the name an exceptional Lie group G, followed by an integer k, indicating that P is the parabolic subgroup of G corresponding to the k-th root. Each file has two part: two lists in the format of Mathematica. In the first part of each file we present the Schubert cells on G/P in term of its minimal word representation in the set W(P;G) of left cosets of the Weyl group of G by the Weyl group of P, where s(i,j) denotes the j-th Schubert cell of dimension 2i, and all of them form an additive basis of the Chow ring of G/P. In the second part of each file, we list all the L-R coefficients, a(i,j,k), required to express the product s(1,1) s(i,j) as a linear combination in the Schubert basis, that is s(1,1) s(i,j) = a(i,j,1) s(i+1,1) + a(i,j,2) s(i+1,2)+.... .
Plik z danymi badawczymi
hexmd5(md5(part1)+md5(part2)+...)-{parts_count}
gdzie pojedyncza część pliku jest wielkości 512 MBPrzykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
Informacje szczegółowe o pliku
- Licencja:
-
otwiera się w nowej karcieCC BYUznanie autorstwa
Informacje szczegółowe
- Rok publikacji:
- 2020
- Data zatwierdzenia:
- 2020-12-17
- Język danych badawczych:
- angielski
- Dyscypliny:
-
- matematyka (Dziedzina nauk ścisłych i przyrodniczych)
- DOI:
- Identyfikator DOI 10.34808/ffc2-6s76 otwiera się w nowej karcie
- Weryfikacja:
- Politechnika Gdańska
Słowa kluczowe
Cytuj jako
Autorzy
wyświetlono 258 razy