Opis
A dataset represents simulated images of depth sensor seeing a single human pose, performing 200,000 random gestures. The depth images as vectors of pixels are stored with ground truth positions of every relevant joint.
3D graphics software (Blender 3D) was used to model, pose and render human figure, creating depth image and appropriate ground truth for each pose. It was assumed, that the sensor has a horizontal field of view 57° (same as Kinect), and the depth image was rendered to 60×50 pixels in 8-bit greyscale (3-bit less, i.e. 8 times lower depth resolution than Kinect).
The human figure was positioned in an empty space, without a background and other foreground objects. In real applications to obtain the same conditions a separation of foreground object based on depth information should be performed, e.g. by assuming the body to be the object closest to a camera, and discarding the ones positioned further by comparing their depth values.
The dataset represents a wide variation of the upper body poses with biologically correct random joints positions, with wrists positions uniformly covering the available space in front of the figure. The body absolute position was changed randomly to introduce shifts in x, y and z directions relative to the fixed sensor. The movement ranges were limited to allow only far reaching hands to leave the frame, whilst the rest of the figure remained visible. 200,000 depth images were created.
The applications of the database include training of object detection and tracking algorithm for body pose recognition.
Plik z danymi badawczymi
hexmd5(md5(part1)+md5(part2)+...)-{parts_count}
gdzie pojedyncza część pliku jest wielkości 512 MBPrzykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
Informacje szczegółowe o pliku
- Licencja:
-
otwiera się w nowej karcieCC BYUznanie autorstwa
Informacje szczegółowe
- Rok publikacji:
- 2020
- Data zatwierdzenia:
- 2020-12-17
- Język danych badawczych:
- angielski
- Dyscypliny:
-
- informatyka techniczna i telekomunikacja (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria biomedyczna (Dziedzina nauk inżynieryjno-technicznych)
- DOI:
- Identyfikator DOI 10.34808/84xp-vz47 otwiera się w nowej karcie
- Weryfikacja:
- Politechnika Gdańska
Słowa kluczowe
Powiązane zasoby
- publikacja ANN for human pose estimation in low resolution depth images
- publikacja CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image
- publikacja Deep neural networks for human pose estimation from a very low resolution depth image
Cytuj jako
Autorzy
wyświetlono 278 razy