Opis
Fuel cells use the chemical energy of hydrogen or other fuels to produce electricity. If the fuel is hydrogen, the only products are electricity, water and heat. Fuel cells are unique in the variety of their potential applications, they can use a wide variety of fuels. They are also highly scalable devices that can power both cars and mobile phones. Fuel cells can operate at a higher efficiency than internal combustion engines and can convert chemical energy directly into electricity with efficiency in excess of 60%. Fuel cells have lower or no emissions compared to internal combustion engines. Hydrogen fuel cells emit only water, responding to critical climate challenges as they emit no carbon dioxide. There are also no air pollutants that cause smog and cause health problems at the site of operation. Fuel cells are also quiet during operation as they have few moving parts. Despite all the above-mentioned advantages, work is still underway to improve the described technology, aimed at increasing efficiency, combating the phenomena of electrode corrosion or improving the dynamics of cell operation. The complex electrochemical system, which is the ion exchange membrane and electrodes (MEA), is responsible for the efficient operation of the described devices [1]. The study of the micro and nanostructure of the membranes can contribute to the assessment of their usefulness and the estimation of the efficiency in the operating conditions of the cell. This collection contains the results of preliminary topographic imaging in the semi-contact variant, allowing to estimate the coarse structure of the object and assess how much magnification should be used. The collection includes 14 images obtained with the NSG30 probe.
Reference:
[1] K. Darowicki, Ł. Gawel, M. Mielniczek, A. Zieliński, E. Janicka, J. Hunger, L. Jorissen, The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream, APPLIED ENERGY, 279 (2020) 115868
Plik z danymi badawczymi
hexmd5(md5(part1)+md5(part2)+...)-{parts_count}
gdzie pojedyncza część pliku jest wielkości 512 MBPrzykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
Informacje szczegółowe o pliku
- Licencja:
-
otwiera się w nowej karcieCC BYUznanie autorstwa
- Dane surowe:
- Dane zawarte w datasecie nie zostały w żaden sposób przetworzone.
- Oprogramowanie:
- Gwyddion
Informacje szczegółowe
- Rok publikacji:
- 2021
- Data zatwierdzenia:
- 2021-08-06
- Język danych badawczych:
- angielski
- Dyscypliny:
-
- inżynieria materiałowa (Dziedzina nauk inżynieryjno-technicznych)
- nauki chemiczne (Dziedzina nauk ścisłych i przyrodniczych)
- DOI:
- Identyfikator DOI 10.34808/12y2-h217 otwiera się w nowej karcie
- Seria:
- Weryfikacja:
- Politechnika Gdańska
Słowa kluczowe
Powiązane zasoby
Cytuj jako
Autorzy
wyświetlono 203 razy