A higher order transversely deformable shell-type spectral finite element for dynamic analysis of isotropic structures - Publikacja - MOST Wiedzy

Wyszukiwarka

A higher order transversely deformable shell-type spectral finite element for dynamic analysis of isotropic structures

Abstrakt

This paper deals with certain aspects related to the dynamic behaviour of isotropic shell-like structures analysed by the use of a higher order transversely deformable shell-type spectral finite element newly formulated and the approach known as the Time-domain Spectral Finite Element Method (TD-SFEM). Although recently this spectral approach is reported in the literature as a very powerful numerical tool used to solve various wave propagation problems, its properties make it also very well suited to solve static and dynamic modal problems. The robustness and effectiveness of the current spectral approach has been successfully demonstrated by the authors in the case of thin-walled spherical shell structures through a series of numerical tests comprising the analysis of natural frequencies and modes of vibration of an isotropic spherical shell as well as the wave propagation analysis in the case of the same spherical shell and a half-pipe shell-like structure.

Cytowania

  • 8

    CrossRef

  • 8

    Web of Science

  • 8

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
FINITE ELEMENTS IN ANALYSIS AND DESIGN nr 142, strony 17 - 29,
ISSN: 0168-874X
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Żak A., Krawczuk M.: A higher order transversely deformable shell-type spectral finite element for dynamic analysis of isotropic structures// FINITE ELEMENTS IN ANALYSIS AND DESIGN. -Vol. 142, (2018), s.17-29
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.finel.2017.12.007
Bibliografia: test
  1. J. W. S. Rayleigh, The Theory of Sound, Dover Publications, Inc., New York, 1945.
  2. J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, 1973.
  3. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, 1999. otwiera się w nowej karcie
  4. J. Zhang, L. Jia, Y. Shu, Wave propagation characteristics of thin shells of revolution by frequency-wave number spectrum method, Journal of Sound and Vibration 251 (2002) 367-372. otwiera się w nowej karcie
  5. F. G. Yuan, C. C. Hsieh, Three-dimensional wave propagation in composite cylindrical shells, Composite Structures 42 (1998) 153-167. otwiera się w nowej karcie
  6. K. M. Liew, Q. Wang, Analysis of wave propagation in carbon nanotubes via elastic shell theories, International Journal of Engineering Science 45 (2007) 227-241. otwiera się w nowej karcie
  7. C. L. Khanh, High frequency vibrations and wave propagation in elastic shells: Variational-asymptotic approach, Inter- national Journal of Solids and Structures 34 (1997) 3923-3939.
  8. V. A. Zarutskii, I. Y. Podil'chuk, Propagation of harmonic waves in longitudinally reinforced cylindrical shells with low shear stiffness, International Applied Mechanics 42 (2006) 525-528. otwiera się w nowej karcie
  9. A. Ghoshal, A. Accorsi, L. Michael, M. S. Bennett, Wave propagation in circular cylindrical shells with periodic axial curvature, Wave Motion 23 (1996) 339-352. otwiera się w nowej karcie
  10. C. Liu, F. Li, W. Huang, Transient wave propagation and early short time transient responses of laminated composite cylindrical shells, Composite Structures 93 (2011) 2587-2597. otwiera się w nowej karcie
  11. A.Żak, A novel formulation of a spectral plate element for wave propagation in isotropic structures, Finite Element in Analysis and Design 45 (2009) 650-658. otwiera się w nowej karcie
  12. W. Ostachowicz, P. Kudela, M. Krawczuk, A.Żak, Guided Waves in Structures for SHM. The Time-domain Spectral Element Method, John Wiley & Sons Ltd., Singapore, 2012. otwiera się w nowej karcie
  13. S. A. Rizzi, J. F. Doyle, A spectral element approach to wave motion in layered solids, Journal of Vibration and Acoustics 114 (1992) 569-577. otwiera się w nowej karcie
  14. J. F. Doyle, Wave Propagation in Structures, Springer-Verlag, Inc., New York, 1997. otwiera się w nowej karcie
  15. S. Gopalakrishnan, J. F. Doyle, Spectral super-elements for wave-propagation in structures with local nonuniformities, Computer Methods in Applied Mechanics and Engineering 121 (1995) 79-90. otwiera się w nowej karcie
  16. S. Gopalakrishnan, A. Chakraborty, D. Roy Mahapatra, Spectral finite element method: Wave propagation, diagnostics and control in anisotropic and inhomogeneous structures, Springer-Verlag London, London, 2008.
  17. A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computa- tional Physics 54 (1984) 468-488. otwiera się w nowej karcie
  18. O. O. Ochoa, J. N. Reddy, Finite Element Analysis of Composite Laminates, Kluwer Academic Publishers, Dordrecht, 1992. otwiera się w nowej karcie
  19. A.Żak, M. Krawczuk, Assessment of rod behaviour theories used in spectral finite element modelling, Journal of Sound and Vibration 329 (2010) 2099-2113. otwiera się w nowej karcie
  20. A.Żak, M. Krawczuk, Assessment of flexural beam behaviour theories used for dynamics and wave propagation problems, Journal of Sound and Vibration 331 (2012) 5715-5731. otwiera się w nowej karcie
  21. S. S. Rao, The Finite Element Method in Engineering, Pergamon Press, Oxford, 1981.
  22. O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill Book Company, London, 1989.
  23. C. Pozdrikidis, Introduction to Finite and Spectral Element Methods using MATLAB, Chapman and Hall//CRC, Boca Raton, 2005. otwiera się w nowej karcie
  24. Z. Su, L. Ye, Y. Lu, Guided lamb waves for identification of damage in composite structures: A review, Journal of Sound and Vibration 295 (2006) 753-780. otwiera się w nowej karcie
  25. V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Academic Press, Oxford, 2007. otwiera się w nowej karcie
  26. Z. Su, L. Ye, Identification of Damage using Lamb Waves. From Fundamentals to Applications, Springer-Verlag, London, 2009. otwiera się w nowej karcie
  27. M. Engholm, Ultrasonic arrays for sensing and beamforming of Lamb waves, Acta Universitatis Upsaliensis Uppsala, Uppsala, 2010. otwiera się w nowej karcie
  28. H. Lamb, On waves in an elastic plate, Proceedings of the Royal Society of London 93 (1917) 293-312. otwiera się w nowej karcie
  29. A. E. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944.
  30. J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, Inc., New York, 2000. otwiera się w nowej karcie
  31. R. D. Blevins, Formulas for Natural Frequency and Mode Shapes, Krieger Publishing Company, Amsterdam, 1976. otwiera się w nowej karcie
  32. H. Lamb, On the vibrations of an elastic sphere, Proceedings of the London Mathematical Society 13 (1882) 189-212. otwiera się w nowej karcie
  33. T. A. Duffey, J. E. Pepin, A. N. Robertson, S. M. L., K. Coleman, Vibrations of complete spherical shells with imperfections, Journal of Vibration and Acoustics 129 (2007) 1-18. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 66 razy

Publikacje, które mogą cię zainteresować

Meta Tagi