A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site - Publikacja - MOST Wiedzy

Wyszukiwarka

A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site

Abstrakt

This paper presents the results of research on determining the optimal length of a peptide chain to eectively bind octanal molecules. Peptides that map the aldehyde binding site in HarmOBP7 were immobilized on piezoelectric transducers. Based on computational studies, four Odorant Binding Protein-derived Peptides (OBPPs) with dierent sequences were selected. Molecular modelling results of ligand docking with selected peptides were correlated with experimental results. The use of low-molecular synthetic peptides, instead of the whole protein, enabled the construction OBPPs-based biosensors. This work aims at developing a biomimetic piezoelectric OBPPs sensor for selective detection of octanal. Moreover, the research is concerned with the ligand binding anity depending on dierent peptides’ chain lengths. The authors believe that the chain length can have a substantial influence on the type and eectiveness of peptide–ligand interaction. A confirmation of in silico investigation results is the correlation with the experimental results, which shows that the highest anity to octanal is exhibited by the longest peptide (OBPP4 – KLLFDSLTDLKKKMSEC-NH2). We hypothesized that the binding of long chain aldehydes to the peptide, mimicking the binding site of HarmOBP7, induced a conformational change in the peptide deposited on a selected transducer. The constructed OBPP4-based biosensors were able to selectively bind octanal in the gas phase. It was also shown that the sensors were characterized by high selectivity with respect to octanal, as well as to acetaldehyde and benzaldehyde. The results indicate that the OBPP4 peptide, mimicking the binding domain in the Odorant Binding Protein, can provide new opportunities for the development of biomimicking materials in the field of odor biosensors.

Cytowania

  • 3 4

    CrossRef

  • 0

    Web of Science

  • 3 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 40 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 19,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Tomasz W., Szulczyński B., Wojciechowski M., Kamysz W., Gębicki J.: A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site// SENSORS -Vol. 19,iss. 20 (2019), s.4293-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s19194284
Bibliografia: test
  1. Wasilewski, T.; Gębicki, J.; Kamysz, W. Bioelectronic nose: Current status and perspective. Biosens. Bioelectron. 2017, 87, 480-494. [CrossRef] [PubMed] otwiera się w nowej karcie
  2. McGann, J.P. Poor human olfaction is a 19th-century myth. Science 2017, 356. [CrossRef] [PubMed] otwiera się w nowej karcie
  3. Wasilewski, T.; Gębicki, J.; Kamysz, W. Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sens. Actuators B Chem. 2018, 257, 511-537. [CrossRef] otwiera się w nowej karcie
  4. Wasilewski, T.; Szulczyński, B.; Kamysz, W.; Gębicki, J.; Namieśnik, J. Evaluation of three peptide immobilization techniques on a qcm surface related to acetaldehyde responses in the gas phase. Sensors 2018, 18, 3942. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. Cao, J.; Deng, L.; Zhu, X.-M.; Fan, Y.; Hu, J.-N.; Li, J.; Deng, Z.-Y. Novel Approach To Evaluate the Oxidation State of Vegetable Oils Using Characteristic Oxidation Indicators. J. Agric. Food Chem. 2014, 62, 12545-12552. [CrossRef] [PubMed] otwiera się w nowej karcie
  6. Zepka, L.Q.; Wagner, R.; Jacob-Lopes, E.; Daltoé, M.M.; Santos, A.B.; Torri, A.F.; Donadel, J.Z.; Queiroz, M.I. Study of the Volatile Compounds Useful for the Characterization of Frozen Anchoita (Engraulis anchoita) by SPME-GC-MS. In Flavour Science; Elsevier: Amsterdam, The Netherlands, 2014; pp. 169-172. [CrossRef] otwiera się w nowej karcie
  7. Fuchs, P.; Loeseken, C.; Schubert, J.K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010, 126, 2663-2670. [CrossRef] otwiera się w nowej karcie
  8. Sankaran, S.; Khot, L.R.; Panigrahi, S. Biology and applications of olfactory sensing system: A review. Sens. Actuators B Chem. 2012, 171-172, 1-17. [CrossRef] otwiera się w nowej karcie
  9. Valle, M. Bioinspired sensor systems. Sensors 2011, 11, 10180-10186. [CrossRef] otwiera się w nowej karcie
  10. Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006, 63, 1658-1676. [CrossRef] otwiera się w nowej karcie
  11. Khadka, R.; Aydemir, N.; Carraher, C.; Hamiaux, C.; Colbert, D. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens. Bioelectron. 2019, 126, 207-213. [CrossRef] otwiera się w nowej karcie
  12. Hurot, C.; Brenet, S.; Buhot, A.; Barou, E.; Belloir, C.; Briand, L. Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging. Biosens. Bioelectron. 2019, 123, 230-236. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Kotlowski, C.; Larisika, M.; Guerin, P.M.; Kleber, C.; Kröber, T.; Mastrogiacomo, R.; Nowak, C.; Pelosi, P.; Schütz, S.; Schwaighofer, A.; et al. Chemical Fine discrimination of volatile compounds by graphene-immobilized odorant-binding proteins. Sens. Actuators B Chem. 2018, 256, 564-572. [CrossRef] otwiera się w nowej karcie
  14. Boyle, S.M.; McInally, S.; Ray, A. Expanding the olfactory code by in silico decoding of odor-receptor chemical space. Elife 2013. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Pelosi, P.; Zhu, J.; Knoll, W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. Sensors 2018, 18, 3248. [CrossRef] [PubMed] otwiera się w nowej karcie
  16. Barbosa, A.J.M.; Oliveira, A.R.; Roque, A.C.A. Protein-and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018, 36, 1244-1258. [CrossRef] [PubMed] otwiera się w nowej karcie
  17. Man, O.; Gilad, Y.; Lancet, D. Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci. 2004, 13, 240-254. [CrossRef] [PubMed] otwiera się w nowej karcie
  18. Nakamura, C.; Miyake, J. Chapter 8. Combinatorially Developed Peptide Receptors for Biosensors. In Combinatorial Methods for Chemical and Biological Sensors, GE Global; Potyrailo, A.R., Ed.; Springer: Niskayuna, NY, USA, 2016. otwiera się w nowej karcie
  19. Boon, C.L.; Frost, D.; Chakrabartty, A. Identification of stable helical bundles from a combinatiorial library of amphipathic peptides. Biopolym. Pept. Sci. Sect. 2004, 76, 244-257. [CrossRef] [PubMed] otwiera się w nowej karcie
  20. Meyer, S.C.; Gaj, T.; Ghosh, I. Highly selective cyclic peptide ligands for neutravidin and avidin identified by phage display. Chem. Biol. Drug Des. 2006, 68, 3-10. [CrossRef] [PubMed] otwiera się w nowej karcie
  21. Liu, Q.; Wang, J.; Boyd, B.J. Peptide-based biosensors. Talanta 2015, 136, 114-127. [CrossRef] [PubMed] otwiera się w nowej karcie
  22. Ruotolo, B.T.; Verbeck, G.F.; Thomson, L.M.; Gillig, K.J.; Russell, D.H. Observation of conserved solution-phase secondary structure in gas-phase tryptic peptides. J. Am. Chem. Soc. 2002, 124, 4214-4215. [CrossRef] otwiera się w nowej karcie
  23. Farrar, D.; West, J.E.; Busch-Vishniac, I.J.; Yu, S.M. Fabrication of polypeptide-based piezoelectric composite polymer film. Scr. Mater. 2008, 59, 1051-1054. [CrossRef] Sensors 2019, 19, 4284 12 of 13 otwiera się w nowej karcie
  24. Lu, H.-H.H.; Rao, Y.K.; Wu, T.-Z.Z.; Tzeng, Y.-M.M. Direct characterization and quantification of volatile organic compounds by piezoelectric module chips sensor. Sens. Actuators B Chem. 2009, 137, 741-746. [CrossRef] otwiera się w nowej karcie
  25. Diociaiuti, M.; Gaudiano, M.C.; Malchiodi-Albedi, F. The slowly aggregating salmon Calcitonin: A useful tool for the study of the amyloid oligomers structure and activity. Int. J. Mol. Sci. 2011, 12, 9277-9295. [CrossRef] [PubMed] otwiera się w nowej karcie
  26. Sankaran, S.; Panigrahi, S.; Mallik, S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens. Bioelectron. 2011, 26, 3103-3109. [CrossRef] [PubMed] otwiera się w nowej karcie
  27. Son, M.; Kim, D.; Kang, J.; Lim, J.H.; Lee, S.H.; Ko, H.J.; Hong, S.; Park, T.H. Bioelectronic Nose Using Odorant Binding Protein-Derived Peptide and Carbon Nanotube Field-Effect Transistor for the Assessment of Salmonella Contamination in Food. Anal. Chem. 2016, 88, 11283-11287. [CrossRef] [PubMed] otwiera się w nowej karcie
  28. Li, Z.-Q.; Zhang, S.; Luo, J.-Y.; Cui, J.-J.; Ma, Y.; Dong, S.-L. Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J. Insect Physiol. 2013, 59, 263-272. [CrossRef] [PubMed] otwiera się w nowej karcie
  29. Sun, Y.-L.; Huang, L.-Q.; Pelosi, P.; Wang, C.-Z. A Lysine at the C-Terminus of an Odorant-Binding Protein is Involved in Binding Aldehyde Pheromone Components in Two Helicoverpa Species. PLoS ONE 2013, 8, e55132. [CrossRef] [PubMed] otwiera się w nowej karcie
  30. Chen, C.-C.; Hwang, J.-K.; Yang, J.-M. (PS)2-v2: Template-based protein structure prediction server. BMC Bioinform. 2009, 10, 366. [CrossRef] [PubMed] otwiera się w nowej karcie
  31. Schmidt, S.; Genz, M.; Balke, K.; Bornscheuer, U.T. The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase. J. Biotechnol. 2015, 214, 199-211. [CrossRef] otwiera się w nowej karcie
  32. Zhou, P.; Tian, F.; Lv, F.; Shang, Z. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins Struct. Funct. Bioinforma. 2009, 76, 151-163. [CrossRef] otwiera się w nowej karcie
  33. Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J. Chem. Theory Comput. 2014, 10, 4745-4758. [CrossRef] [PubMed] otwiera się w nowej karcie
  34. Tuffery, P.; Thevenet, P.; Guyon, F.; Shen, Y.; Derreumaux, P.; Maupetit, J. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012, 40, W288-W293. [CrossRef] otwiera się w nowej karcie
  35. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701-1718. [CrossRef] [PubMed] otwiera się w nowej karcie
  36. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791. [CrossRef] [PubMed] otwiera się w nowej karcie
  37. Wojciechowski, M. Simplified AutoDock force field for hydrated binding sites. J. Mol. Graph. Model. 2017, 78, 74-80. [CrossRef] [PubMed] otwiera się w nowej karcie
  38. Srisombat, L.; Jamison, A.C.; Lee, T.R. Stability: A key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 390, 1-19. [CrossRef] otwiera się w nowej karcie
  39. Latif, U.; Can, S.; Hayden, O.; Grillberger, P.; Dickert, F.L. Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors-Detection of bioanalytes. Sens. Actuators B Chem. 2013, 176, 825-830. [CrossRef] otwiera się w nowej karcie
  40. Anselmi, C.; Buonocore, A.; Centini, M.; Maffei, R.; Hatt, H. The human olfactory receptor 17-40: Requisites for fitting into the binding pocket. Comput. Biol. Chem. 2011, 35, 159-168. [CrossRef] otwiera się w nowej karcie
  41. Desimoni, E.; Brunetti, B. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharm. Anal. Acta. 2015, 6. [CrossRef] otwiera się w nowej karcie
  42. Wessa, T.; Göpel, W. Molecular recognition: Supramolecular, polymeric and biomimetic coatings for chemical sensors and chromatographic columns. Fresenius J. Anal. Chem. 1998, 361, 239-245. [CrossRef] otwiera się w nowej karcie
  43. di Natale, C.; Macagnano, A.; Davide, F.; D'Amico, A.; Paolesse, R.; Boschi, T.; Faccio, M.; Ferri, G. An electronic nose for food analysis. Sens. Actuators B Chem. 1997, 44, 521-526. [CrossRef] otwiera się w nowej karcie
  44. Compagnone, D.; Fusella, G.C.C.; del Carlo, M.; Pittia, P.; Martinelli, E.; Tortora, L.; Paolesse, R.; di Natale, C.; Pittia, P.; Paolesse, R.; et al. Gold nanoparticles-peptide based gas sensor arrays for the detection of food aromas. Biosens. Bioelectron. 2013, 42, 618-625. [CrossRef] [PubMed] otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 168 razy

Publikacje, które mogą cię zainteresować

Meta Tagi