A measurement method for capacitive sensors based on a versatile direct sensor-to-microcontroller interface circuit - Publikacja - MOST Wiedzy

Wyszukiwarka

A measurement method for capacitive sensors based on a versatile direct sensor-to-microcontroller interface circuit

Abstrakt

In the paper, there is presented a new time-domain measurement method for determining the capacitance values of capacitive sensors, dedicated, among others, to capacitive relative humidity sensors. The method is based on a versatile direct sensor-to-microcontroller interface for microcontrollers with internal analog comparators (ACs) and with precision voltage reference sources, e.g. digital-to-analog converters (DACs). The reference source can be replaced by a resistive divider attached to the negative input of the AC. The interface circuit consists only of a reference resistor Rr, a given capacitive sensor working as a voltage divider, and a microcontroller (its peripherals: AC, timer, DAC, I/O pins). A prototype of the proposed complete solution of a compact capacitive smart sensor based on an 8-bit ATXmega32A4 microcontroller has been developed and tested. The maximum possible relative inaccuracy of an indirectly measurable capacitance was analysed, and experimental research was also performed. The results confirmed that the relative errors of value determination for a capacitive sensor are less than ±0.06%, which corresponds to a capacitance measurement accuracy of less than 0.1 pF for a range of measured capacity values from 100 pF to 225 pF, which in turn corresponds to at least a 0.5% relative humidity resolution for commercial capacitive RH sensors (e.g. TE Connectivity HS1101LF and Philips H1).

Cytowania

  • 6

    CrossRef

  • 5

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MEASUREMENT nr 155, strony 1 - 11,
ISSN: 0263-2241
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Czaja Z.: A measurement method for capacitive sensors based on a versatile direct sensor-to-microcontroller interface circuit// MEASUREMENT -Vol. 155, (2020), s.1-11
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.measurement.2020.107547
Bibliografia: test
  1. T. A. Blank, L. P. Eksperiandova, K. N. Belikov, Recent trends of ceramic humidity sensors development: A review, Sensors and Actuators B 228 (2016) 416-442. otwiera się w nowej karcie
  2. Z. M. Rittersm, Recent achievements in miniaturised humidity sensors -a review of transduction techniques, Sensors and Actuators A 96 7 (2002) 196-210. otwiera się w nowej karcie
  3. M. Dokmeci, K. Najafi, A High-Sensitivity Polyimide Capacitive Relative Humidity Sensor for Monitoring Anodically Bonded Hermetic Micropackages, Journal of Microelectromechanical Systems, 10 (2) (2001) 197-204. otwiera się w nowej karcie
  4. Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Capacitive humidity sensor design based on anodic aluminum oxide, Sensors and Actuators B 141 (2009) 441-446. otwiera się w nowej karcie
  5. A. Rivadeneyra, J. Fernandez-Salmeron, M. Agudo-Acemel, J. A. Lopez-Villanueva, L. F. otwiera się w nowej karcie
  6. Capitan-Vallvey, A. J. Palmac, Printed electrodes structures as capacitive humidity sensors: A comparison, Sensors and Actuators A 244 (2016) 56-65.
  7. F. Reverter, O. Casas, Direct interface circuit for capacitive humidity sensors, Sensors and Actuators A 143 (2008) 315-322. otwiera się w nowej karcie
  8. TE Connectivity Ltd., HS1101LF Relative Humidity Sensor, SENSOR SOLUTIONS /// HS1101LF HPC052_J (2015). otwiera się w nowej karcie
  9. Philips Components, Humidity sensor 2322 691 90001 Product specification, (1996).
  10. G. Tuna, V. C . Gungor, Ch2 -Energy harvesting and battery technologies for powering wireless sensor networks, Industrial Wireless Sensor Networks. Woodhead Publishing (2016), 25-38. otwiera się w nowej karcie
  11. M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hamalainen, M. Hannikainen T. D. Hamalainen, Ultra-low energy wireless sensor networks in practice, John Wiley & Sons, Ltd., Great Britain, 2007.
  12. F. Reverter, M. Gasulla, R. Pallàs-Areny, Analysis of power-supply interference effects on direct sensor-to-microcontroller interfaces, IEEE Transactions on Instrumentation and Measurement 56 (1) (2007) 171-177. otwiera się w nowej karcie
  13. F. Reverter, The Art of Directly Interfacing Sensors to Microcontrollers, Journal of Low Power Electronics and Applications (2) (2012) 265-281. otwiera się w nowej karcie
  14. F. Reverter, Ò. Casas, Interfacing differential resistive sensors to microcontrollers: A direct approach, IEEE Transactions on Instrumentation and Measurement 58 (10) (2009) 3405-3410. otwiera się w nowej karcie
  15. F. Reverter, O. Casas, A microcontroller-based interface circuit for lossy capacitive sensors, Measurement Science Technology 21 (2010) 065203, 1-8. otwiera się w nowej karcie
  16. F. Reverter, O. Casas, Interfacing Differential Capacitive Sensors to Microcontrollers: A Direct Approach, IEEE Transactions on Instrumentation and Measurement 59 (2010) 2763-2769. otwiera się w nowej karcie
  17. J. E. Gaitán-Pitre, M. Gasulla, R. Pallàs-Areny, Analysis of a Direct Interface Circuit for Capacitive Sensors, IEEE Transactions on Instrumentation and Measurement 58 (9) (2009) 2932-2937. otwiera się w nowej karcie
  18. J. Pelegrí-Sebastiá, E. García-Breijo, J. Ibáńez, T. Sogorb, N. Laguarda-Miro, J. Garrigues, Low-Cost Capacitive Humidity Sensor for Application Within Flexible RFID Labels Based on Microcontroller Systems, IEEE Transactions on Instrumentation and Measurement 61 (2) (2012) 545-553. otwiera się w nowej karcie
  19. O. Lopez-Lapeńa, E. Serrano-Finetti and O. Casas, Calibration-less direct capacitor-to- microcontroller interface, Electronics Letters 52 (4) (2016) 289-291. otwiera się w nowej karcie
  20. Z. Kokolanski, J. Jordana, M. Gasulla, V. Dimcev, F. Reverter, Direct inductive sensor-to- microcontroller interface circuit, Sensors and Actuators A 224 (2015) 185-191. otwiera się w nowej karcie
  21. Z. Kokolanski, F. Reverter, C. Gavrovski, V. Dimcev, Improving the resolution in direct inductive sensor-to-microcontroller interface, Annual Journal Of Electronics (2015) 135-138. otwiera się w nowej karcie
  22. Z. Czaja, A microcontroller system for measurement of three independent components in impedance sensors using a single square pulse, Sensors and Actuators A 173 (2012) 284-292. otwiera się w nowej karcie
  23. Z. Czaja, An implementation of a compact smart resistive sensor based on a microcontroller with an internal ADC, Metrology and Measurement Systems 23 (2016) 255-238. otwiera się w nowej karcie
  24. Z. Czaja, Time-domain measurement methods for R, L and C sensors based on a versatile direct sensor-to-microcontroller interface circuit, Sensors and Actuators A 274 (2018) 199- 210. otwiera się w nowej karcie
  25. F. Reverter, X. Li, G. C M Meijer, Stability and accuracy of active shielding for grounded capacitive sensors, Measurement Science and Technology 17 (2006) 2884-2890. otwiera się w nowej karcie
  26. F. Reverter, X. Li, G. C M Meijer, A novel interface circuit for grounded capacitive sensors with feedforward-based active shielding, Measurement Science and Technology 19 (2008) 025202 (5pp). otwiera się w nowej karcie
  27. Atmel Corporation, 8/16-bit AVR XMEGA A4 Microcontroller. ATxmega128A4, ATxmega64A4, ATxmega32A4, ATxmega16A4, (2013), Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8069-8-and-16-bit-AVR- otwiera się w nowej karcie
  28. AMEGA-A4-Microcontrollers_Datasheet.pdf. otwiera się w nowej karcie
  29. Microchip Technology Inc., AVR1300: Using the Atmel AVR XMEGA ADC, (2017), Available at: http://ww1.microchip.com/downloads/en/Appnotes/00002535A.pdf. otwiera się w nowej karcie
  30. F. Reverter, R. Pallàs-Areny, Effective number of resolution bits in direct sensor-to- microcontroller interfaces, Measurement Science and Technology 15 (2004) 2157-2162. otwiera się w nowej karcie
  31. F. Reverter, R. Pallàs-Areny, Uncertainty reduction techniques in microcontroller-based time measurements, Sensors and Actuators A 127 (2006) 74-79. otwiera się w nowej karcie
  32. K. Kolikov, G. Krastevy, Y. Epitropov, A. Corlat, Analytically determining of the relative inaccuracy (error) of indirectly measurable variable and dimensionless scale characterizing quality of the experiment, Computer Science Journal of Moldova 20 (58) (2012) 15-32. otwiera się w nowej karcie
  33. I. Farrance, R. Frenkel, Uncertainty of measurement: A review of the rules for calculating uncertainty components through functional relationships, The Clinical Biochemist Reviews 33 (2012), 49-75.
  34. Agilent Technologies, Agilent 34410A/11A 6 1/2 digit multimeter user's guide (2012). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 114 razy

Publikacje, które mogą cię zainteresować

Meta Tagi