A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry - Publikacja - MOST Wiedzy

Wyszukiwarka

A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry

Abstrakt

This paper presents a novel sensor for detecting and measuring angular rotation and proximity, intended for rapid prototyping machines. The sensor is based on a complementary split-ring resonator (CSRR) driven by a conductor-backed coplanar waveguide. The sensor has a planar topology, which makes it simple and cost-effective to produce and accurate in measuring both physical quantities. The sensor has two components, a rotor, and a stator: the first of these can rotate around its axis and translate along the plane normal to the ground. A detailed theoretical and numerical analysis, along with a circuit model, of the unique sensor design is presented. The proposed sensor exhibits linear response for measuring angular rotation and proximity in the range of 30×60 degrees and 0-200 μm. Another distinctive feature of the rotation and proximity sensor is the wide frequency band of applicability, which is an integral part of its novel design and is implemented through various dielectric material loadings on the CSRR. The stator was fabricated on RF-35 substrate, while the CSRR-based rotor was fabricated on TLY-5 and RF-35 substrates. The angular rotation, the proximity, the operating band selection, and the sensitivity were measured using a vector network analyzer and were found to be good matches to the simulated and theoretical result

Cytowania

  • 4 3

    CrossRef

  • 0

    Web of Science

  • 4 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 116 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS nr 68, strony 683 - 693,
ISSN: 0278-0046
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Jha A., Lamęcki A., Mrozowski M., Maurizio B.: A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry// IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS -Vol. 68,iss. 1 (2021), s.683-693
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/tie.2020.2965464
Bibliografia: test
  1. J. Józwik, Experimental methods of error identification in CNC machine tool operation, Lublin University of Technology, 978-83-7947-312-0, 2018. otwiera się w nowej karcie
  2. R Ramesh, M. A. Mannan and A. N Poo, "Error compensation in machine tools -a review: Part I: geometric, cutting-force induced and fixture-dependent errors," Int. J. Mach. Tool. Manu., vol. 40, no. 9, pp. 1235-1256, 2000. otwiera się w nowej karcie
  3. Submitted to the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 10 otwiera się w nowej karcie
  4. A. Levy, "Multilayer printed circuit interconnection techniques," IEEE Trans. Compon. Packag. Technol., vol. 8, no. 1, pp. 16-20, April 1964. otwiera się w nowej karcie
  5. V. N. Rayapatii and B. Kaminska, "Performance analysis of multilayer interconnections for megabit static random access memory chip," IEEE Trans. Components Hybrids Manuf. Technol., vol. 16, no. 5, pp. 469- 477, Aug. 1993. otwiera się w nowej karcie
  6. N. Anandan and B. George, "A wide-range capacitive sensor for linear and angular displacement measurement," IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5728-5737, 2017. otwiera się w nowej karcie
  7. T. A. Tameh, M. Sawan and R. Kashyap, "Smart integrated optical rotation sensor incorporating a fly-by-wire control system," IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6505-6514, Aug. 2018. otwiera się w nowej karcie
  8. Z. Zhang, F. Ni, Y. Dong, C. Guo, M. Jin and H. Liu, "A novel absolute magnetic rotary sensor," IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4408-4419, 2015. otwiera się w nowej karcie
  9. P. Luo, Q. Tang and H. Jing, "Optimal design of angular displacement sensor with shared magnetic field based on the magnetic equivalent loop method," Sensors, vol. 19, no. 9, May 2019. otwiera się w nowej karcie
  10. S. R. Khan and M. P. Y. Desmulliez, "Implementation of a dual wireless power transfer and rotation monitoring system for prosthetic hands," IEEE Access, vol. 7, pp. 107616-107625, 2019. otwiera się w nowej karcie
  11. J. Deak and I. Jin, "High-field tunneling magnetoresistive angle sensor," IEEE Trans. Magn., vol. 55, no. 10, pp. 1-4, Oct. 2019, Art no. 6700104. otwiera się w nowej karcie
  12. Z. Chen and R. C. Luo, "Design and implementation of capacitive proximity sensor using microelectromechanical systems technology," IEEE Trans. Ind. Electron., vol. 45, no. 6, pp. 886-894, Dec. 1998.
  13. J. Won, H. Ryu, T. Delbruck, J. H. Lee and J. Hu, "Proximity sensing based on a dynamic vision sensor for mobile devices," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 536-544, Jan. 2015. otwiera się w nowej karcie
  14. Z. Xu, R. Wang, X. Yue, T. Liu, C. Chen and S. Fang, "FaceME: face- to-machine proximity estimation based on RSSI difference for mobile industrial human-machine interaction," IEEE Trans Ind. Informat., vol. 14, no. 8, pp. 3547-3558, Aug. 2018. otwiera się w nowej karcie
  15. Y. Kim et. al., "Developing accurate long-distance 6-DOF motion detection with one-dimensional laser sensors: Three-beam detection system," IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3386-3395, 2012. otwiera się w nowej karcie
  16. X. Lü et al., "A novel proximity sensor based on parallel plate capacitance," IEEE Sensors J., vol. 18, no. 17, pp. 7015-7022, Sept.1, 2018.
  17. E. Chen et al., "Polymer infrared proximity sensor array," IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1215-1220, April 2011. otwiera się w nowej karcie
  18. C. Canali, G. Cicco, B. Morten, M. Prudenziati and A. Taroniet, "A temperature compensated ultrasonic sensor operating in air for distance and proximity measurements," IEEE Trans. Ind. Electron., vol. 4, pp. 336-341, 1982. otwiera się w nowej karcie
  19. B. K. Kim and Ki-Nam Joo, "A multi-channel fiber optic proximity sensor," Meas. Sci. Technol., vol. 27, no. 3, 2016. otwiera się w nowej karcie
  20. S. Fericean, A. Dorneich, R. Droxler and D. Krater, "Development of a microwave proximity sensor for industrial applications," IEEE Sensors J., vol. 9, no. 7, pp. 870-876, July 2009. otwiera się w nowej karcie
  21. J. Basseri and M. Joodaki, "An angular displacement sensor with a curved two-metal-layer CPW loaded by an EBG structure," IEEE Sensors J., vol. 18, no. 6, pp. 2335-2341, March, 15 2018. otwiera się w nowej karcie
  22. J. Naqui and F. Martín, "Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors," IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4700- 4713, Dec. 2013. otwiera się w nowej karcie
  23. J. Naqui and F. Martín, "Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines," IEEE Sensors J., vol. 14, no. 4, pp. 939-940, April 2014. otwiera się w nowej karcie
  24. C. Herrojo, J. Mata-Contreras, F. Paredes and F. Martín, "Microwave encoders for chipless RFID and angular velocity sensors based on S- shaped split-ring resonators," IEEE Sensors J., vol. 17, no. 15, pp. 4805- 4813, Aug.1, 2017. otwiera się w nowej karcie
  25. J. Mata-Contreras, C. Herrojo and F. Martín, "Application of split-ring resonator (SRR) loaded transmission lines to the design of angular displacement and velocity sensors for space applications," IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4450-4460, Nov. 2017. otwiera się w nowej karcie
  26. A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi and D. Abbott, "Metamaterial-inspired rotation sensor with wide dynamic range," IEEE Sensors J., vol. 14, no. 8, pp. 2609-2614, Aug. 2014. otwiera się w nowej karcie
  27. A. K. Horestani, D. Abbott and C. Fumeaux, "Rotation sensor based on horn-shaped split-ring resonator," IEEE Sensors J., vol. 13, no. 8, pp. 3014-3015, Aug. 2013. otwiera się w nowej karcie
  28. A. K. Jha, N. Delmonte, A. Lamecki, M. Mrozowski and M. Bozzi, "Design of microwave-based angular displacement sensor," IEEE Microwave and Wireless Components Letters, vol. 29, no. 4, pp. 306- 308, April 2019. otwiera się w nowej karcie
  29. V. Sipal, A. Z. Narbudowicz and M. J. Ammann, "Contactless measurement of angular velocity using circularly polarized antennas," IEEE Sensors J., vol. 15, no. 6, pp. 3459-3466, June 2015. otwiera się w nowej karcie
  30. J.Naqui, M. Durán-Sindreu, and F. Martín, "Modeling split-ring resonator (SRR) and complementary split-ring resonator (CSRR) loaded transmission lines exhibiting cross-polarization effects," IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 178-181, 2013. otwiera się w nowej karcie
  31. D. Halliday, R. Resnick and J. Walker, Fundamentals of physics, John Wiley & Sons, 2013. otwiera się w nowej karcie
  32. R. N. Simons, Coplanar waveguide circuits, components, and systems, vol. 165. John Wiley & Sons, 2004. otwiera się w nowej karcie
  33. T. Kodera, D. L. Sounas, and C. Caloz, "Magnetless nonreciprocal metamaterial (MNM) technology: Application to microwave components," IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1030-1042, 2013. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 1372 razy

Publikacje, które mogą cię zainteresować

Meta Tagi