A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
Abstrakt
The article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with different structures were trained to find the best structure to classify anomalies. The influence of various parameters of network structures on the overall accuracy of classification was examined. For the best networks, class prediction rates were examined. Activations of selected convolutional layers were studied and visualized to present how the network works in a friendly and understandable way. The best convolutional neural network for detecting vessel movement anomalies has been proposed. The proposed CNN is compared with multiple baseline algorithms trained on the same dataset.
Cytowania
-
1 3
CrossRef
-
0
Web of Science
-
1 2
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.isatra.2021.02.030
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
ISA TRANSACTIONS
nr 119,
strony 1 - 16,
ISSN: 0019-0578 - Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Czaplewski B., Dzwonkowski M.: A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification// ISA TRANSACTIONS -Vol. 119, (2022), s.1-16
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.isatra.2021.02.030
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 441 razy