A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification - Publikacja - MOST Wiedzy

Wyszukiwarka

A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification

Abstrakt

The article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with different structures were trained to find the best structure to classify anomalies. The influence of various parameters of network structures on the overall accuracy of classification was examined. For the best networks, class prediction rates were examined. Activations of selected convolutional layers were studied and visualized to present how the network works in a friendly and understandable way. The best convolutional neural network for detecting vessel movement anomalies has been proposed. The proposed CNN is compared with multiple baseline algorithms trained on the same dataset.

Cytowania

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ISA TRANSACTIONS nr 119, strony 1 - 16,
ISSN: 0019-0578
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Czaplewski B., Dzwonkowski M.: A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification// ISA TRANSACTIONS -Vol. 119, (2022), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.isatra.2021.02.030
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 441 razy

Publikacje, które mogą cię zainteresować

Meta Tagi