A random signal generation method for microcontrollers with DACs - Publikacja - MOST Wiedzy


A random signal generation method for microcontrollers with DACs


A new method of noise generation based on software implementation of a 7-bit LFSR based on a common polynomial PRBS7 using microcontrollers equipped with internal ADCs and DACs and a microcontroller noise generator structure are proposed in the paper. Two software applications implementing the method: written in ANSI C and based on the LUT technique and written in AVR Assembler are also proposed. In the method the ADC results are used to reseed the LFSR after its each full work cycle, what improves randomness of generated data, which results in a greater similarity of the generated random signal to white noise, what was confirmed by the results of experimental research. The noise generator uses only the internal devices of the microcontroller, hence the proposed solution does not introduce hardware redundancy to the system.


  • 0


  • 0

    Web of Science

  • 0


Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Metrology and Measurement Systems nr 25, strony 675 - 687,
ISSN: 0860-8229
Rok wydania:
Opis bibliograficzny:
Czaja Z., Kowalewski M.: A random signal generation method for microcontrollers with DACs// Metrology and Measurement Systems. -Vol. 25, nr. 4 (2018), s.675-687
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.24425/mms.2018.124880
Bibliografia: test
  1. Saluja, K.K. (1987). Linear feedback shift registers theory and applications. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 4.
  2. Walczak, J., Stępień, R. (2012). Discrete Modeling of LFSR Registers. Elektryka, 2(222), 97-104.
  3. D'Alvano, F., Badra, R.E. (1996). A Simple Low-Cost Laboratory Hardware for Noise Generation. IEEE Transactions on Education, 39(2), 280-281. otwiera się w nowej karcie
  4. Mita, R., Palumbo, G., Pennisi, S.M., Poli, M. (2002). A Novel Pseudo Random Bit Generator for Cryptography Applications. The 9th IEEE International Conference on Electronics, Circuits and Sys- tems, 489-492. otwiera się w nowej karcie
  5. Cypress Semiconductor Corporation. (2015). 8-Bit Pseudo Random Sequence Generator Datasheet, Document Number: 001-13579 Rev. *J. otwiera się w nowej karcie
  6. Mondal, S., Barman, A.D., Datta, A.K. (2012). ARM7 Microcontroller Based Digital PRBS Genera- tor. International Journal of Electrical, Electronics and Computer Engineering, 1(2), 55-59.
  7. Walczak, J., Stępień, R. (2010). Microprocessor Based White Noise Generator. Elektryka, 2(214), 97-104. otwiera się w nowej karcie
  8. Babu, P., Soumya, S.S., Sudheesh, K., Sujeesh, K., Syamily, P.S. (2014). Design of a Microcontroller Based Random Number Generator. International Journal of Advanced Research in Electrical, Elec- tronics and Instrumentation Engineering, 3(2), 7614-7618.
  9. Fimml, P. (2013). HOWTO: A Simple Random Number Generator for the ATmega1280 Microcon- troller. https://ti.tuwien.ac.at/ecs/teaching/courses/mclu_2014/misc/task1-specific-stuff/rand_howto.pdf. otwiera się w nowej karcie
  10. Czaja, Z. (2013). Self-Testing of Analog Parts Terminated by ADCs Based on Multiple Sampling of Time Responses. IEEE Transactions on Instrumentation and Measurement, (62), 3160-3167. otwiera się w nowej karcie
  11. Toczek, W., Czaja, Z. (2011). Diagnosis of fully differential circuits based on a fault dictionary imple- mented in the microcontroller systems. Microelectronics Reliability, 8(51), 1413-1421. otwiera się w nowej karcie
  12. Czaja, Z. (2016). An Implementation of a Compact Smart Resistive Sensor Based on a Microcontroller with an Internal ADC. Metrol. Meas. Syst., 23(2), 255-238. otwiera się w nowej karcie
  13. Czaja, Z. (2012). A microcontroller system for measurement of three independent components in impedance sensors using a single square pulse. Sensors and Actuators A, (173), 284-292. otwiera się w nowej karcie
  14. Czaja, Z. (2018). Time-domain measurement methods for R, L and C sensors based on a versatile direct sensor-to-microcontroller interface circuit. Sensors and Actuators A, (274), 199-210. otwiera się w nowej karcie
  15. Jevtic, N., Vujo, Drndarevic, V. (2013). Design and implementation of plug-and-play analog resistance temperature sensor. Metrol. Meas. Syst., 20(4), 565-580. otwiera się w nowej karcie
  16. Kokolanski, Z., Gavrovski, C., Dimcev, V., Makraduli, M. (2013). Hardware techniques for improving the calibration performance of direct resistive sensor-to-microcontroller interface. Metrol. Meas. Syst., 20(4), 529-542. otwiera się w nowej karcie
  17. Microchip Technology Inc. (2017). 8-bit Atmel XMEGA AU Microcontroller, XMEGA AU MAN- UAL. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8331-8-and-16-bit-AVR-Microcon troller-XMEGA-AU_Manual.pdf.
  18. Tavacoli J. Silicon Driven Signal Integrity Tools. Altera (2005). ftp://ftp.altera.com/outgoing/down load/education/events/2005_highspeed_altera.pdf otwiera się w nowej karcie
  19. Mutagi, R.N. (1996). Pseudo noise sequences for engineers. Electronics & Communication Engineer- ing Journal, 79-87. otwiera się w nowej karcie
  20. Atmel Corporation. (2015). AVR Libc Reference Manual. [online] https://www.microchip.com/web doc/AVRLibcReferenceManual/index.html. otwiera się w nowej karcie
  21. Atmel Corporation. (2016). AVR Assembler. [online] https://www.microchip.com/webdoc/GUID- E06F3258-483F-4A7B-B1F8-69933E029363/index.html. otwiera się w nowej karcie
  22. Atmel Corporation. (2016). AVR Instruction Set Manual. http://ww1.microchip.com/downloads/en/ DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf. otwiera się w nowej karcie
  23. Keysight Technologies. (2017). U2500A Series USB Modular Simultaneous Sampling Multi- function DAQ Devices -Data Sheet. https://literature.cdn.keysight.com/litweb/pdf/5991-0651EN. pdf?id=2205971. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 26 razy

Publikacje, które mogą cię zainteresować

Meta Tagi