A study of the kinetics of bismuth telluride synthesis by an oxide reduction method - Publikacja - MOST Wiedzy

Wyszukiwarka

A study of the kinetics of bismuth telluride synthesis by an oxide reduction method

Abstrakt

The kinetics of a reduction of bismuth and tellurium oxides in a hydrogen atmosphere, leading to the formation of thermoelectric bismuth telluride is investigated. The evaluation of the reaction kinetics was based on a thermogravimetric analysis performed in non-isothermal conditions. A non-parametric analysis method and the Friedman method were used for the evaluation of the data. Additionally, for a better understanding of the process, reactions of the reduction of Bi2O3, TeO2 as well as Bi2Te2O7 and Bi2Te4O11, which are formed as intermediate products, were investigated. The activation energies calculated for the reactions were between 56 kJ/mol in the case of the Bi2Te2O7 reduction and 100 kJ/mol for the reduction of mixed oxides. No correlation between the activation energy and the Bi:Te ratio in the reduced material was found. The calculated conversion functions also differed between the investigated reactions. A self-heating process was found for TeO2 and Bi2Te4O11 reduction reactions. In the case of the tellurium oxide, it was assigned to the melting of Te nanoparticles. These effects were also found to enhance the synthesis of Bi2Te3 by the reduction of mixed bismuth and tellurium oxides. The resulting thermoelectric material was found to be completely reduced, with no traces of oxygen in the XPS spectrum. EDX mapping of the cross-section of material’s grains revealed a homogenous distribution of elements in the final product.

Cytowania

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 50 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
THERMOCHIMICA ACTA nr 683, strony 1 - 9,
ISSN: 0040-6031
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Trawiński B. J., Bochentyn B., Łapiński M. S., Kusz B.: A study of the kinetics of bismuth telluride synthesis by an oxide reduction method// THERMOCHIMICA ACTA -Vol. 683, (2020), s.1-9
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.tca.2019.178437
Bibliografia: test
  1. L. Teng, S. Noguchi, S. Seetharaman, Reduction kinetics of FeO-CoO solid solution by hydrogen gas, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 38 (2007) 55-61, https://doi.org/10.1007/s11663-006-9006-1. otwiera się w nowej karcie
  2. M. Bahgat, M.-K. Paek, C.-H. Park, J.-J. Pak, Thermal synthesis of nanocrystalline (CoxNi1-x)yFe1-y KOVAR alloy through gaseous reduction of mixed oxides, Mater. Trans. 49 (2008) 208-214, https://doi.org/10.2320/matertrans.MER2007229. otwiera się w nowej karcie
  3. J.-J. Pak, M. Bahgat, B.-H. Kim, M.-K. Paek, Low temperature isothermal reduction kinetics of Fe 2 O 3 /NiO mixed oxides and comparative synthesis of Fe1-xNix alloys, Mater. Trans. 49 (2008) 352-359, https://doi.org/10.2320/matertrans. MRA2007203. otwiera się w nowej karcie
  4. B. Li, Y. Wei, H. Wang, Non-isothermal reduction kinetics of Fe 2 O 3 -NiO composites for formation of Fe-Ni alloy using carbon monoxide, Trans. Nonferrous Met. Soc. China 24 (2014) 3710-3715, https://doi.org/10.1016/S1003-6326(14)63519-6. otwiera się w nowej karcie
  5. D. Jelić, S. Zeljković, B. Škundrić, S. Mentus, Thermogravimetric study of the re- duction of CuO-WO 3 oxide mixtures in the entire range of molar ratios, J. Therm. Anal. Calorim. 132 (2018) 77-90, https://doi.org/10.1007/s10973-017-6921-0. otwiera się w nowej karcie
  6. D. Vie, N. Valero, E. Martínez, F. Sapiña, J.-V. Folgado, A. Beltrán, A new approach to the synthesis of intermetallic compounds: mild synthesis of submicrometric CoxMy (M = Mo, W; x:y = 3:1 and 7:6) particles by direct reduction of freeze-dried precursors, J. Mater. Chem. 12 (2002) 1017-1021, https://doi.org/10.1039/ b110798d. otwiera się w nowej karcie
  7. S. Gavriliu, M. Lungu, M. Lucaci, E. Enescu, New WAg electrical contacts with ul- trafine structure for low voltage devices, J. Optoelectron. Adv. Mater. 8 (2006) 702-707.
  8. J.C. Juarez, R. Morales, Reduction kinetics of Ag 2 MoO 4 by hydrogen, Metall. Mater. Trans. B 39 (2008) 738-745, https://doi.org/10.1007/s11663-008-9173-3. otwiera się w nowej karcie
  9. O.A. Bulavchenko, Z.S. Vinokurov, T.N. Afonasenko, P.G. Tsyrul'nikov, S.V. Tsybulya, A.A. Saraev, V.V. Kaichev, Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies, Dalton Trans. 44 (2015) 15499-15507, https://doi.org/10. 1039/C5DT01440A. otwiera się w nowej karcie
  10. S.B. Sarkar, H.S. Ray, I. Chatterjee, Kinetics of reduction of iron ore-Coal pellets, J. Therm. Anal. 35 (1989) 2461-2469, https://doi.org/10.1007/BF01911910. otwiera się w nowej karcie
  11. K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, T. Wiltowski, Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process, Int. J. Hydrogen Energy (2005), https://doi.org/10.1016/j. ijhydene.2004.10.013. otwiera się w nowej karcie
  12. A. Maleki, N. Hosseini, B. Niroumand, A review on aluminothermic reaction of Al/ ZnO system, Ceram. Int. 44 (2018) 10-23, https://doi.org/10.1016/J.CERAMINT. 2017.09.168. otwiera się w nowej karcie
  13. J.J. Ritter, A novel synthesis of polycrystalline bismuth telluride, Inorg. Chem. 33 (1994) 6419-6420, https://doi.org/10.1021/ic00104a065. otwiera się w nowej karcie
  14. J.J. Ritter, P. Maruthamuthu, Synthesis of fine-powder polycrystalline Bi−Se−Te, Bi−Sb−Te, and Bi−Sb−Se−Te alloys, Inorg. Chem. 36 (1997) 260-263, https:// doi.org/10.1021/ic960616i. otwiera się w nowej karcie
  15. M. Saleemi, M.S. Toprak, S. Li, M. Johnsson, M. Muhammed, Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi 2 Te 3 ), J. B. Trawiński, et al. Thermochimica Acta 683 (2020) 178437 otwiera się w nowej karcie
  16. Mater. Chem. 22 (2012) 725-730, https://doi.org/10.1039/C1JM13880D. otwiera się w nowej karcie
  17. G. Lee, G. Ha, Synthesis of Bi0.5Sb1.5Te3 thermoelectric powder using an oxide- reduction process, J. Korean Inst. Electr. Electron. Mater. Eng. 43 (2014) 1697-1702, https://doi.org/10.1007/s11664-013-2846-y. otwiera się w nowej karcie
  18. Y.S. Lim, S.M. Wi, G.G. Lee, Synthesis of n-type Bi2Te1-xSex compounds through oxide reduction process and related thermoelectric properties, J. Eur. Ceram. Soc. 37 (2017) 3361-3366, https://doi.org/10.1016/j.jeurceramsoc.2017.04.020. otwiera się w nowej karcie
  19. B. Bochentyn, J. Karczewski, T. Miruszewski, B. Kusz, Structure and thermoelectric properties of Bi-Te alloys obtained by novel method of oxide substrates reduction, J. Alloys Compd. 646 (2015) 1124-1132, https://doi.org/10.1016/J.JALLCOM. 2015.06.127. otwiera się w nowej karcie
  20. N. Gostkowska, T. Miruszewski, B. Trawiński, B. Bochentyn, B. Kusz, Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of re- duction of oxide reagents, Solid State Sci. 73 (2017) 41-50, https://doi.org/10. 1016/j.solidstatesciences.2017.07.016. otwiera się w nowej karcie
  21. B. Trawiński, B. Bochentyn, N. Gostkowska, M. Łapiński, T. Miruszewski, B. Kusz, Structure and thermoelectric properties of bismuth telluride-Carbon composites, Mater. Res. Bull. 99 (2018) 10-17, https://doi.org/10.1016/j.materresbull.2017. 10.043. otwiera się w nowej karcie
  22. K.T. Kim, T.S. Lim, G.H. Ha, Improvement in thermoelectric properties of N-Type bismuth telluride nanopowders by hydrogen reduction treatment, Rev. Adv. Mater. Sci. 28 (2011) 196-199. otwiera się w nowej karcie
  23. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (2011) 1-19, https://doi.org/10.1016/j.tca.2011.03.034. otwiera się w nowej karcie
  24. G.B. Taylor, H.W. Starkweather, Reduction of metal oxides by hydrogen, J. Am. Chem. Soc. 52 (1930) 2314-2325, https://doi.org/10.1021/ja01369a019. otwiera się w nowej karcie
  25. B. Janković, B. Adnad, S. Mentus, The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method, Thermochim. Acta 456 (2007) 48-55, https://doi.org/10.1016/j.tca.2007. 01.033. otwiera się w nowej karcie
  26. J. Šesták, The quandary aspects of non-isothermal kinetics beyond the ICTAC ki- netic committee recommendations, Thermochim. Acta 611 (2015) 26-35, https:// doi.org/10.1016/J.TCA.2015.04.026. otwiera się w nowej karcie
  27. M. Maciejewski, Computational aspects of kinetic analysis. Part B: the ICTAC Kinetics Project -the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield, Thermochim. Acta 355 (2000) 145-154, https://doi.org/10.1016/S0040-6031(00)00444-5. otwiera się w nowej karcie
  28. K.V. Manukyan, A.G. Avetisyan, C.E. Shuck, H.A. Chatilyan, S. Rouvimov, S.L. Kharatyan, A.S. Mukasyan, Nickel oxide reduction by hydrogen: kinetics and structural transformations, J. Phys. Chem. C 119 (2015) 16131-16138, https://doi. org/10.1021/acs.jpcc.5b04313. otwiera się w nowej karcie
  29. V.B. Chernogorenko, K.A. Lynchak, Production of bismuth powder by the reduction of bismuth oxide with a mixture of molecular and atomic hydrogen, Sov. Powder Metall. Met. Ceram. 12 (1973) 360-362, https://doi.org/10.1007/BF00791258. otwiera się w nowej karcie
  30. F. Korkmaz, S. Cetinkaya, S. Eroglu, Thermodynamic analysis and reduction of bismuth oxide by ethanol, Metall. Mater. Trans. B 47 (2016) 2378-2385, https:// doi.org/10.1007/s11663-016-0686-x. otwiera się w nowej karcie
  31. B. Trawiński, B. Bochentyn, B. Kusz, A study of a reduction of a micro-and nano- metric bismuth oxide in hydrogen atmosphere, Thermochim. Acta 669 (2018) 99-108, https://doi.org/10.1016/J.TCA.2018.09.010. otwiera się w nowej karcie
  32. R. Serra, J. Sempere, R. Nomen, A new method for the kinetic study of thermo- analytical data: the non-parametric kinetics method, Thermochim. Acta 316 (1998) 37-45, https://doi.org/10.1016/S0040-6031(98)00295-0. otwiera się w nowej karcie
  33. G. Guisbiers, L.C. Mimun, R. Mendoza-Cruz, K.L. Nash, Synthesis of tunable tell- urium nanoparticles, Semicond. Sci. Technol. 32 (2017) 04LT01, , https://doi.org/ 10.1088/1361-6641/aa6173. otwiera się w nowej karcie
  34. X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, C. Uher, Self-propagating high-temperature synthesis for com- pound thermoelectrics and new criterion for combustion processing, Nat. Commun. 5 (2014) 4908, https://doi.org/10.1038/ncomms5908. otwiera się w nowej karcie
  35. Z. Szaller, L. Pöppl, G. Lovas, I. Dódony, Study of the formation of Bi2Te4O11, J. Solid State Chem. 121 (1996) 251-261, https://doi.org/10.1006/JSSC.1996.0036. otwiera się w nowej karcie
  36. G.A. Lovas, I. Dódony, L. Pöppl, Z. Szaller, On the phase transitions of Bi 2 Te 4 O11, J. Solid State Chem. 135 (1998) 175-181, https://doi.org/10.1006/JSSC.1997.7594. otwiera się w nowej karcie
  37. O. Masson, P. Thomas, O. Durand, T. Hansen, J. Champarnaud, D. Mercurio, On the structure of the disordered Bi 2 Te 4 O11 phase, J. Solid State Chem. 177 (2004) 2168-2176, https://doi.org/10.1016/J.JSSC.2004.03.010. otwiera się w nowej karcie
  38. P. Kumar, P. Srivastava, J. Singh, R. Belwal, M.K. Pandey, K.S. Hui, K.N. Hui, K. Singh, Morphological evolution and structural characterization of bismuth tell- uride (Bi 2 Te 3 ) nanostructures, J. Phys. D Appl. Phys. 46 (2013) 285301, , https:// doi.org/10.1088/0022-3727/46/28/285301. otwiera się w nowej karcie
  39. D. Music, K. Chang, P. Schmidt, F.N. Braun, M. Heller, S. Hermsen, P.J. Pöllmann, T. Schulzendorff, C. Wagner, On atomic mechanisms governing the oxidation of Bi 2 Te 3 , J. Phys. Condens. Matter. 29 (2017) 485705, , https://doi.org/10.1088/ 1361-648X/aa945f. otwiera się w nowej karcie
  40. S. Liu, N. Peng, Y. Bai, D. Ma, F. Ma, K. Xu, Self-formation of thickness tunable Bi 2 Te 3 nanoplates on thin films with enhanced thermoelectric performance, RSC Adv. 6 (2016) 31668-31674, https://doi.org/10.1039/C5RA26835D. otwiera się w nowej karcie
  41. J. Fu, S. Song, X. Zhang, F. Cao, L. Zhou, X. Li, H. Zhang, Bi 2 Te 3 nanoplates and nanoflowers: synthesized by hydrothermal process and their enhanced thermo- electric properties, CrystEngComm 14 (2012) 2159, https://doi.org/10.1039/ c2ce06348d. otwiera się w nowej karcie
  42. B. Trawiński, et al. Thermochimica Acta 683 (2020) 178437 otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 240 razy

Publikacje, które mogą cię zainteresować

Meta Tagi