Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
Abstrakt
Methods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to present a comprehensive framework for designing and curating machine learning training data sets for web-based medical information credibility assessment. We show how to construct the annotation process. Our main objective is to support researchers from the medical and computer science communities. We offer guidelines on the preparation of data sets for machine learning models that can fight medical misinformation. Methods: We begin by providing the annotation protocol for medical experts involved in medical sentence credibility evaluation. The protocol is based on a qualitative study of our experimental data. To address the problem of insufficient initial labels, we propose a preprocessing pipeline for the batch of sentences to be assessed. It consists of representation learning, clustering, and reranking. We call this process active annotation. Results: We collected more than 10,000 annotations of statements related to selected medical subjects (psychiatry, cholesterol, autism, antibiotics, vaccines, steroids, birth methods, and food allergy testing) for less than US $7000 by employing 9 highly qualified annotators (certified medical professionals), and we release this data set to the general public. We developed an active annotation framework for more efficient annotation of noncredible medical statements. The application of qualitative analysis resulted in a better annotation protocol for our future efforts in data set creation. Conclusions: The results of the qualitative analysis support our claims of the efficacy of the presented method.
Cytowania
-
2
CrossRef
-
0
Web of Science
-
3
Scopus
Autorzy (5)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2196/26065
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
JMIR Medical Informatics
nr 9,
ISSN: 2291-9694 - Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Nabożny A., Balcerzak B., Wierzbicki A., Morzy M., Chlabicz M.: Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning// JMIR Medical Informatics -Vol. 9,iss. 11 (2021), s.e26065-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2196/26065
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 139 razy
Publikacje, które mogą cię zainteresować
Improving medical experts’ efficiency of misinformation detection: an exploratory study
- A. Nabożny,
- B. Balcerzak,
- M. Morzy
- + 3 autorów
Focus on Misinformation: Improving Medical Experts’ Efficiency of Misinformation Detection
- A. Nabożny,
- B. Balcerzak,
- M. Morzy
- + 1 autorów
Medical Image Dataset Annotation Service (MIDAS)
- B. Klaudel,
- A. Obuchowski,
- B. Rydziński
- + 4 autorów