Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems - Publikacja - MOST Wiedzy

Wyszukiwarka

Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems

Abstrakt

In this paper, a novel multivariate active noise control scheme, designed to attenuate disturbances with high autocorrelation characteristics and preserve background signals, is proposed. The algorithm belongs to the class of feedback controllers and, unlike the popular feedforward FX-LMS approach, does not require availability of a reference signal. The proposed approach draws its inspiration from the iterative learning control and repetitive mode control methods, and employs a modified inverse model learning law. The classical inverse model learning law is well known to offer fast convergence and high steady-state performance, provided that the secondary path is minimum phase and well known. The proposed modified inverse model learning law employs a spectral factorization trick, which allows one to use the method with nonminimum phase plants of arbitrary order. Moreover, our scheme includes a controller bandwidth limiting mechanism that can be used to tune the disturbance rejection bandwidth and to improve the closed-loop robustness to errors in the model of the secondary path. The algorithm’s behavior and performance are verified with computer simulations that demonstrate suppression of electrical transformer noise and include realistic models of the secondary path. The results show high-level selective attenuation and fast convergence.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
CIRCUITS SYSTEMS AND SIGNAL PROCESSING
ISSN: 0278-081X
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Meller M., Lasota A.: Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems// CIRCUITS SYSTEMS AND SIGNAL PROCESSING -, (2022),
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00034-022-02167-4
Weryfikacja:
Politechnika Gdańska

wyświetlono 20 razy

Publikacje, które mogą cię zainteresować

Meta Tagi