Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete - Publikacja - MOST Wiedzy

Wyszukiwarka

Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete

Abstrakt

Conventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC) materials have recently received considerable attention. Following the emergence of advanced prediction techniques aimed at reducing experimental tools and labor costs, this study provides a comparative study of different methods based on machine learning (ML) algorithms to propose an active learning-based ML model (AL-Stacked ML) for predicting the compressive strength of AA-UHPC. A data-rich framework containing 284 experimental datasets and 18 input parameters was collected. A comprehensive evaluation of the significance of input features that may affect compressive strength of AA-UHPC was performed. Results confirm that AL-Stacked ML-3 with accuracy of 98.9% can be used for different general experimental specimens, which have been tested in this research. Active learning can improve the accuracy up to 4.1% and further enhance the Stacked ML models. In addition, graphical user interface (GUI) was introduced and validated by experimental tests to facilitate comparable prospective studies and predictions.

Cytowania

  • 4

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Archives of Civil and Mechanical Engineering nr 25,
ISSN: 1644-9665
Język:
angielski
Rok wydania:
2025
Opis bibliograficzny:
Kazemi F., Shafighfard T., Jankowski R., Yoo D.: Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete// Archives of Civil and Mechanical Engineering -Vol. 25,iss. 1 (2024),
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s43452-024-01067-5
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 87 razy

Publikacje, które mogą cię zainteresować

Meta Tagi