An analysis of solar energy conversion systems based on photon and thermal processes - Publikacja - MOST Wiedzy

Wyszukiwarka

An analysis of solar energy conversion systems based on photon and thermal processes

Abstrakt

Solar spectral irradiance covers a fairly broad wavelength range. Solar radiation is part of the electromagnetic spectrum which is described by the concept of wave-particle duality. The corpuscular theory of electromagnetic radiation states that energy is transmitted by photons. Photons carry specific amounts of energy which can be used to convert solar energy into other types of energy, in particular electricity. The internal photoelectric effect is important for the conversion of solar energy to electricity because the efficiency of the external photoelectric effect is too low. Every quantum of solar energy also carries a certain amount of energy which can be converted into heat energy. The objective of the paper is to analyze and compare the efficiency of solar energy conversion in photon and thermal processes, to review the technological advances made in this field, and to indicate potential directions for the development of systems converting solar energy to electricity.

Autorzy (2)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 77 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Geology, Geophysics & Environment nr 42, strony 403 - 409,
ISSN: 2299-8004
Język:
angielski
Rok wydania:
2016
Opis bibliograficzny:
Fieducik J., Godlewski J.: An analysis of solar energy conversion systems based on photon and thermal processes// Geology, Geophysics & Environment. -Vol. 42., nr. 4 (2016), s.403-409
Bibliografia: test
  1. Baranowski L., Snyder G. & Toberer E., 2012. Concentrated solar thermoelectric generators. Energy Environment, 5, 9055-9067. otwiera się w nowej karcie
  2. Bell L.E., 2008. Cooling, Heating, Generation Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321, 1457-1461. otwiera się w nowej karcie
  3. Congreve D.N., Lee J., Thompson N.J., Hontz E., Yost S.R., Reusswig P.D., Bahlke M.E., Reineke S., Van Voor- his T. & Baldo M.A., 2013. External Quantum Efficiency Above 100% in a Singlet-Exciton-fission-Based Organic Photovoltaic Cell. Science, 340, 334-337. otwiera się w nowej karcie
  4. De Vos A., 1980. Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics, 13, 839-846. otwiera się w nowej karcie
  5. Dragoman D. & Dragoman M., 2007. Giant thermoelectric effect in graphene. Applied Physics Letters, 91, 203116- 203116-3 otwiera się w nowej karcie
  6. Meir S., Stephanos C., Geballe T.H. & Mannhart J., 2013. Highly-efficient thermoelectronic conversion of solar energy and heat into electric power. Journal of Renew- able and Sustainable Energy, 5, 043127-1-043127-15.
  7. Peters M., Goldschmidt J.Ch., Löper P., Groß B., Üpping J., Dimroth f., Wehrspohn R.B. & Bläsi B., 2010. Spectrally- Selective Photonic Structures for PV Applications. Ener- gies, 3(2), 171-193. otwiera się w nowej karcie
  8. Pope M. & Swenberg Ch.E., 1999. Electronic Processes in Or- ganic Crystals and Polymers. 2 nd ed. Oxford University Press.
  9. PV Measurements, http://pvmeasurements.com [access: 10.10. 2016].
  10. Quintana H.A., Song E., Wang G.T. &. Martinez J.A., 2013. Heat Transport in Novel Nanostructured Materials and their Thermoelectric Applications. Chemical Engineer- ing and Process Techniques, 1, 1-5.
  11. Schwede J.W., Bargatin I., Riley D.C., Hardin B.E., Rosenth- al S.J., Sun Y., Schmitt f., Pianetta P., Howe R.T., Shen Zhi-Xun & Melosh N.A. 2010. Photon-enhanced therm- ionic emission for solar concentrator systems. Nature Materials, 9, 762-767. otwiera się w nowej karcie
  12. Segev G., Rosenwaks Y. & Kribus A., 2015. Limit of efficien- cy for photon-enhanced thermionic emission vs. photo- voltaic and thermal conversion. Solar Energy Materials and Solar Cells, 140, 464-476. otwiera się w nowej karcie
  13. Shockley W. & Queisser H.J., 1961. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32, 510-519. otwiera się w nowej karcie
  14. Snyter G.J., 2008. Small Thermoelectric Generators. Electro- chemical Society Interface, 17, 3, 54-56.
  15. Sze S.M. & Ng Kwok K., 2006. Physics of Semiconductor De- vices. 3 rd ed. Wiley. otwiera się w nowej karcie
  16. Thekaekara M.P., 1976. Solar Radiation Measurement: Tech- niques and Instrumentation. Solar Energy, 18, 309-325. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 134 razy

Publikacje, które mogą cię zainteresować

Meta Tagi