An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger - Publikacja - MOST Wiedzy

Wyszukiwarka

An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger

Abstrakt

In the article, the authors presented the influence of continuous core-baffle geometry at mixed convection heat transfer in shell and coil heat exchanger. Experiments were carried out for a large power range, i.e. from 100W to 1200W and mass flow rates ranging from 0.01 kg/s to 0.025 kg/s. During the experiments, the mass flow rate of cooling water, the temperature of water at the inlet and outlet as well as the wall temperature of the coil (at 6 points over the coil's circumference) and the water temperature in the jacket of the exchanger (at 10 points along the shell height) were measured. The article confirmed that new form of continuous baffle geometry can successfully enhance heat transfer, but rather for small values of mass flow rates. It was also noted that the inlet/outlet configuration has significant influences on the fluid flow as well as temperature distribution at the jacket of the heat exchanger. The new experimental Nusselt numbers correlation at the shell side of the heat exchanger with continuous core-baffles was presented.

Cytowania

  • 1 3

    CrossRef

  • 1 4

    Web of Science

  • 1 6

    Scopus

Cytuj jako

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
APPLIED THERMAL ENGINEERING nr 136, strony 237 - 251,
ISSN: 1359-4311
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Andrzejczyk R., Muszyński T.: An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger// APPLIED THERMAL ENGINEERING. -Vol. 136, (2018), s.237-251
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.applthermaleng.2018.03.003
Bibliografia: test
  1. S.A. Berger, L. Talbot, L.S. Yao, Flow in curved pipes, Annu. Rev. Fluid Mech. 15 (1983) 461-512. otwiera się w nowej karcie
  2. T.A. Pimenta, J. Campos, Friction losses of Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil, Exp. Therm. Fluid Sci. 36 (2012) 194-204. otwiera się w nowej karcie
  3. N. Ghorbani Mianroudi, M. Gorji, H. Taherian, Experimental Study of Mixed Convection Shell-and-Coil Heat Exchanger, (2008) 129-135.
  4. http://dx.doi.org/10.1115/HT2008-56504. otwiera się w nowej karcie
  5. R.K. Patil, B.W. Shende, P.K. Ghosh, DESIGNING A HELICAL-COIL HEAT EXCHANGER., Chem. Eng. (New York). 89 (1982) 85-88.
  6. A. Zachár, Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall, Int. J. Heat Mass Transf. 53 (2010) 3928-3939. otwiera się w nowej karcie
  7. T. Muszynski, R. Andrzejczyk, Heat transfer characteristics of hybrid microjet - Microchannel cooling module, Appl. Therm. Eng. 93 (2016) 1360-1366. doi:10.1016/j.applthermaleng.2015.08.085. otwiera się w nowej karcie
  8. T. Muszynski, S.M. Koziel, Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator, Arch. Thermodyn. 37 (2016) 45-62. doi:10.1515/aoter-2016-0019. otwiera się w nowej karcie
  9. S. Brückner, S. Liu, L. Miró, M. Radspieler, L.F. Cabeza, E. Lävemann, Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies, Appl. Energy. 151 (2015) 157-167. doi:10.1016/j.apenergy.2015.01.147. otwiera się w nowej karcie
  10. D. Mikielewicz, R. Andrzejczyk, B. Jakubowska, J. Mikielewicz, Analytical Model With Nonadiabatic Effects for Pressure Drop and Heat Transfer During Boiling and Condensation Flows in Conventional Channels and Minichannels, Heat Transf. Eng. 37 (2016) 1158-1171. otwiera się w nowej karcie
  11. T. Bohdal, H. Charun, M. Sikora, Empirical study of heterogeneous refrigerant condensation in pipe minichannels, Int. J. Refrig. 59 (2015) 210-223. doi:10.1016/j.ijrefrig.2015.07.002. otwiera się w nowej karcie
  12. T. Muszynski, R. Andrzejczyk, C.A. Dorao, Detailed experimental investigations on frictional pressure drop of R134a during flow boiling in 5 mm diameter channel: The influence of acceleration pressure drop component, Int. J. Refrig. 82 (2017). doi:10.1016/j.ijrefrig.2017.05.029. otwiera się w nowej karcie
  13. R. Andrzejczyk, T. Muszynski, C.A. Dorao, Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5 mm diameter channel, Exp. Therm. Fluid Sci. 83 (2017) 78-87. doi:10.1016/j.expthermflusci.2016.12.016. otwiera się w nowej karcie
  14. R.A. Białecki, T. Burczyński, A. Długosz, W. Kuś, Z. Ostrowski, Evolutionary shape optimization of thermoelastic bodies exchanging heat by convection and radiation, Comput. Methods Appl. Mech. Eng. 194 (2005) 1839-1859. doi:10.1016/j.cma.2004.07.004. otwiera się w nowej karcie
  15. W.P. Adamczyk, P. Kozołub, G. Węcel, A. Klimanek, R.A. Białecki, T. Czakiert, Modeling oxy-fuel combustion in a 3D circulating fluidized bed using the hybrid Euler-Lagrange approach, Appl. Therm. Eng. 71 (2014) 266-275. doi:10.1016/j.applthermaleng.2014.06.063. otwiera się w nowej karcie
  16. T. Muszynski, Design And Experimental Investigations Of A Cylindrical Microjet Heat Exchanger For Waste Heat Recovery Systems, Appl. Therm. Eng. (2017). doi:10.1016/j.applthermaleng.2017.01.021. otwiera się w nowej karcie
  17. S. Liu, M. Sakr, A comprehensive review on passive heat transfer enhancements in pipe exchangers, Renew. Sustain. Energy Rev. 19 (2013) 64-81. otwiera się w nowej karcie
  18. A. Bartwal, A. Gautam, M. Kumar, C.K. Mangrulkar, S. Chamoli, Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring-metal wire net inserts, Chem. Eng. Process. Process Intensif. 124 (2018) 50-70. otwiera się w nowej karcie
  19. S. Chamoli, R. Lu, P. Yu, Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts, Appl. Therm. Eng. 121 (2017) 1117-1134. otwiera się w nowej karcie
  20. N. Acharya, M. Sen, H.-C. Chang, Analysis of heat transfer enhancement in coiled- tube heat exchangers, Int. J. Heat Mass Transf. 44 (2001) 3189-3199. doi:10.1016/S0017-9310(01)00002-3. otwiera się w nowej karcie
  21. P. Naphon, Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins, Int. Commun. Heat Mass Transf. 34 (2007) 321-330. doi:10.1016/j.icheatmasstransfer.2006.11.009. otwiera się w nowej karcie
  22. C. Yildiz, Y. Bíçer, D. Pehlívan, Influence of fluid rotation on the heat transfer and pressure drop in double-pipe heat exchangers, Appl. Energy. 54 (1996) 49-56. doi:10.1016/0306-2619(95)00070-4. otwiera się w nowej karcie
  23. C. Yildiz, Y. Biçer, D. Pehlivan, Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs, Energy Convers. Manag. 38 (1997) 619- 624. doi:10.1016/S0196-8904(96)00040-4. otwiera się w nowej karcie
  24. A.J.K. Thomas, R.C. Bindeesh, N.S. Thomas, P. Unaira, K.B. Radhakrishnan, Experimental Investigation on Heat Transfer Augmentation in Helical Coil Heat Exchanger Using Wire Coil/Spring Inserts, Imp. J. Interdiscip. Res. 2 (2016).
  25. D. Panahi, K. Zamzamian, Heat transfer enhancement of shell-and-coiled tube heat exchanger utilizing helical wire turbulator, Appl. Therm. Eng. 115 (2017) 607-615. doi:10.1016/j.applthermaleng.2016.12.128. otwiera się w nowej karcie
  26. J. Avina, The modeling of a natural convection heat exchanger in a solar domestic hot water system, University of Wisconsin--Madison, 1995.
  27. R. Kharat, N. Bhardwaj, R.S. Jha, Development of heat transfer coefficient correlation for concentric helical coil heat exchanger, Int. J. Therm. Sci. 48 (2009) 2300-2308. otwiera się w nowej karcie
  28. M.R. Salem, K.M. Elshazly, R.Y. Sakr, R.K. Ali, Effect of Coil Torsion on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger, J. Therm. Sci. Eng. Appl. 8 (2015) 11015. doi:10.1115/1.4030732. otwiera się w nowej karcie
  29. Q.S. Mahdi, L.D.S.A. Fattah, Experimental and Numerical Investigation to Evaluate the Performance of Helical Coiled Tube Heat Exchanger, J. Eng. Dev. 18 (2014). otwiera się w nowej karcie
  30. R. Andrzejczyk, T. Muszynski, Thermodynamic and geometrical characteristics of mixed convection heat transfer in the shell and coil tube heat exchanger with baffles, Appl. Therm. Eng. 121 (2017) 115-125. doi:10.1016/j.applthermaleng.2017.04.053. otwiera się w nowej karcie
  31. R. Andrzejczyk, T. Muszynski, Performance Analyses Of Helical Coil Heat Exchangers. The Effect Of External Coil Surface Modification On Heat Exchanger Effectiveness, Arch. Thermodyn. (2016). doi:AOT-00010-2016-04. otwiera się w nowej karcie
  32. Y.A. Cengel, Introduction to thermodynamics and heat transfer, McGraw-Hill New York, 1997.
  33. G.F. Hewitt, G.L. Shires, T.R. Bott, Process heat transfer, CRC press Boca Raton, FL, 1994.
  34. L.J. Shah, S. Furbo, Entrance effects in solar storage tanks, Sol. Energy. 75 (2003) 337-348. otwiera się w nowej karcie
  35. H.D.I. Abarbanel, D.D. Holm, J.E. Marsden, T. Ratiu, Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow, Phys. Rev. Lett. 52 (1984) 2352-2355. doi:10.1103/PhysRevLett.52.2352. otwiera się w nowej karcie
Źródła finansowania:
  • Działalność statusowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 65 razy

Publikacje, które mogą cię zainteresować

Meta Tagi