Analysis of the regenerative braking process for the urban traffic conditions - Publikacja - MOST Wiedzy


Analysis of the regenerative braking process for the urban traffic conditions


In a regular drive system, with an internal combustion engine, vehicle braking is connected with the unproductive dissipation of kinetic and potential energy accumulated in the mass of the vehicle into the environment. This energy can constitute up to 70% of the energy used to drive a vehicle under urban conditions. Its recovery and reuse is one of the basic advantages of hybrid and electric vehicles. Modern traffic management systems as well as navigation systems should take into account the possibility of the energy recovery in the process of regenerative braking. For this purpose, a model of a regenerative braking process may be helpful, which on the one hand will enable to provide information on how traffic conditions will affect the amount of energy dissipated (wasted) into the atmosphere, on the other hand will help to optimize the route of vehicles with regenerative braking systems. This work contains an analysis of the process of the regenerative braking for the urban traffic conditions registered in Gdańsk. A model was also presented that allows calculating the amount of energy available from the braking process depending on the proposed variables characterizing the vehicle traffic conditions.


  • 0


  • 0

    Web of Science

  • 0


Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Combustion Engines nr 178, strony 203 - 207,
ISSN: 2300-9896
Rok wydania:
Opis bibliograficzny:
Kropiwnicki J., Furmanek M.: Analysis of the regenerative braking process for the urban traffic conditions// Combustion Engines. -Vol. 178., iss. 3 (2019), s.203-207
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.19206/ce-2019-335
Bibliografia: test
  1. BIRRELL, S., et al. Analysis of three independent real- world driving studies: A data driven and expert analysis ap- proach to determining parameters affecting fuel economy. Transportation Research Part D. 2014, 33, 74-86. otwiera się w nowej karcie
  2. CIEŚLIK, W., PIELECHA, I., SZAŁEK, A. Indexes of performance of combustion engines in hybrid vehicles dur- ing the UDC test. Combustion Engines. 2015, 160, 11-25. otwiera się w nowej karcie
  3. DAMIANI, L. et al. Improvement of powertrain efficiency through energy breakdown analysis. Applied Energy. 2014, 121, 252-263. otwiera się w nowej karcie
  4. EEA Annual European Union greenhouse gas inventory 1990-2014 and inventory report 2016. Copenhagen 2016. otwiera się w nowej karcie
  5. FIORI, C. et al. Power-based electric vehicle energy con- sumption model: Model development and validation. Ap- plied Energy. 2016, 168, 257-268. otwiera się w nowej karcie
  6. Goole Maps, (visited: 28.04.2019). otwiera się w nowej karcie
  7. JEFFREYS, I. et al. Evaluation of eco-driving training for vehicle fuel use and emission reduction: A case study in Australia. Transportation Research Part D. 2018, 60, 85-91. otwiera się w nowej karcie
  8. KALOCIŃSKI, T., RYMANIAK, Ł., FUĆ, P. Powertrain technology transfer between F1 and the Automotive industry based on Mercedes-Benz. Combustion Engines. 2018, 172, 3-13.
  9. KROPIWNICKI, J., KNEBA, Z., ZIÓŁKOWSKI, M. Test for assessing the energy efficiency of vehicles with internal combustion engines. International Journal of Automotive Technology. 2013, 14, 479-487. otwiera się w nowej karcie
  10. KROPIWNICKI, J., KNEBA, Z. Phenomenological correc- tion of height above ground level of vehicle derived from GPS system. 6th International Conference Mechatronic Sys- tems and Materials. 2010, 1-7. otwiera się w nowej karcie
  11. KROPIWNICKI, J. Identification of real vehicle operating conditions with using of specific energy consumption. The Archives of Automotive Engineering. 2010, 3, 153-166. otwiera się w nowej karcie
  12. KULKARNI, A.V., SAPRE, R.R., SONCHAL, CH.P. GPS- based methodology for drive cycle determination. SAE Technical Paper 2005-01-1060, 2005. otwiera się w nowej karcie
  13. MERSKY, A.C., SAMARAS, C. Fuel economy testing of autonomous vehicles. Transportation Research Part C. 2016, 65, 31-48. otwiera się w nowej karcie
  14. PIELECHA, I., CIEŚLIK, W., FLUDER, K. Analysis of energy management strategies for hybrid electric vehicles in urban driving conditions. Combustion Engines. 2018, 173, 14-18. otwiera się w nowej karcie
  15. PIELECHA, I., CIEŚLIK, W., SZAŁEK, A. The use of electric drive in urban driving conditions using a hydrogen powered vehicle -Toyota Mirai. Combustion Engines. 2018, 172, 51-58. otwiera się w nowej karcie
  16. STĘPIEŃ, Z. A new generation of F1 race engines -hybrid power units. Combustion Engines. 2016, 167, 22-37.
  17. TRIANTAFYLLOPOULOS, G. et al. Experimental assess- ment of the potential to decrease diesel NO x emissions be- yond minimum requirements for Euro 6 Real Drive Emis- sions (RDE) compliance. Science of the Total Environment. 2018, 618, 1400-1407. otwiera się w nowej karcie
  18. Yanosik, (visited: 28.04.2019).
  19. ZAHABI, S.A.H. et al. Fuel economy of hybrid-electric versus conventional gasoline vehicles in real-world condi- tions: A case study of cold cities in Quebec, Canada. Trans- portation Research Part D. 2014, 32, 184-192. otwiera się w nowej karcie
  20. ZHANG, R., YAO, E. Electric vehicles' energy consump- tion estimation with real driving condition data. Transporta- tion Research Part D. 2015, 41, 177-187. otwiera się w nowej karcie
  21. Jacek Kropiwnicki, DSc., DEng. -Faculty of Me- chanical Engineering, Gdańsk University of Tech- nology. e-mail:
Politechnika Gdańska

wyświetlono 119 razy

Publikacje, które mogą cię zainteresować

Meta Tagi