Antibacterial polyurethanes, modifed with cinnamaldehyde, as potential materials for fabrication of wound dressings - Publikacja - MOST Wiedzy

Wyszukiwarka

Antibacterial polyurethanes, modifed with cinnamaldehyde, as potential materials for fabrication of wound dressings

Abstrakt

The epidermis is a skin layer, which protects an organism from the different factors of external environment. Therefore, the fast and effective regeneration of epidermis is important. Potential materials used for epidermis regeneration may be polyurethane scaffolds in form of the thin permeable layers. One and main disadvantage of such polyurethane scaffolds are their lack of antibacterial and antifungal properties. The great proposition to improve antiseptic properties of polyurethane epidermis scaffolds is to modify them with the use of substances, which reveal antiseptic, antimicrobial, and/or antifungal properties like cinnamaldehyde (CA). The great advantage speaking in favor of this compound is the fact that it has been approved and concerned as generally safe by the Food and Drug Administration in the USA. In this paper was described the fabrication of antibacterial microporous polyurethane scaffolds (MPTLs) in a form of a thin layers by using solvent-casting/particulateleaching technique combined with thermally induced phase separation. Obtained MPTLs were modified with CA at different concentrations (0.5–5%): to establish the most suitable antibacterial effect of the CA introduced into the MPTLs matrix. Obtained unmodified and CA-modified MPTLs were characterized by mechanical and physicochemical properties as well as by identification of their antibacterial performance. The performed studies revealed that the most relevant antimicrobial effect of CA-modified MPTLs was observed when the CA concentration was 3.5%.

Cytowania

  • 1 0

    CrossRef

  • 1 1

    Web of Science

  • 1 1

    Scopus

Cytuj jako

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
POLYMER BULLETIN nr 76, strony 2725 - 2742,
ISSN: 0170-0839
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kucińska-Lipka J., Gubańska I., Lewandowska A., Terebieniec A., Haryńska A., Cieśliński H.: Antibacterial polyurethanes, modifed with cinnamaldehyde, as potential materials for fabrication of wound dressings// POLYMER BULLETIN. -Vol. 76, (2018), s.2725-2742
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00289-018-2512-x
Bibliografia: test
  1. Esteban-vives R, Young MT, Ziembicki J et al (2015) ScienceDirect Effects of wound dressings on cultured primary keratinocytes. Burns. https ://doi.org/10.1016/j.burns .2015.06.016 otwiera się w nowej karcie
  2. Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preven- tive chitosan hydrogel wound dressings. Int J Pharm 508:92-101. https ://doi.org/10.1016/j.ijpha rm.2016.05.013 otwiera się w nowej karcie
  3. Vowden K (2017) Wound dressings: principles and practice. Surgery 35:489-494. https ://doi. org/10.1016/j.mpsur .2017.06.005 otwiera się w nowej karcie
  4. Koosehgol S, Ebrahimian-hosseinabadi M, Alizadeh M, Zamanian A (2017) Preparation and char- acterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing. Mater Sci Eng, C 79:66-75. https ://doi.org/10.1016/j.msec.2017.05.001 otwiera się w nowej karcie
  5. Yari A, Yeganeh H, Bakhshi H (2012) Synthesis and evaluation of novel absorptive and antibacte- rial polyurethane membranes as wound dressing. J Mater Sci Mater Med. https ://doi.org/10.1007/ s1085 6-012-4683-6 otwiera się w nowej karcie
  6. Bergamo R, Buzatto C, Alberto J, Maria  (2017) Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 88:161-170. https ://doi.org/10.1016/j.eurpo lymj.2017.01.021 otwiera się w nowej karcie
  7. Fan L, Yang H, Yang J et al (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr Polym 146:427-434. https ://doi.org/10.1016/j.carbp ol.2016.03.002 otwiera się w nowej karcie
  8. Agarwal T, Narayan R, Maji S, Behera S (2016) Gelatin/carboxymethyl chitosan based scaf- folds for dermal tissue engineering applications. Int J Biol Macromol 93:1499-1506. https ://doi. org/10.1016/j.ijbio mac.2016.04.028 otwiera się w nowej karcie
  9. Tavakoli J, Tang Y (2017) Honey/PVA hybrid wound dressings with controlled release of antibiot- ics: structural, physico-mechanical and in vitro biomedical studies. Mater Sci Eng, C 77:318-325. https ://doi.org/10.1016/j.msec.2017.03.272 otwiera się w nowej karcie
  10. Ganesan P (2017) Natural and bio polymer curative films for wound dressing medical applications. Biochem Pharmacol 18:33-40. https ://doi.org/10.1016/j.wndm.2017.07.002 otwiera się w nowej karcie
  11. Xie H, Chen X, Shen X et al (2017) Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int J Biol Macromol. https ://doi.org/10.1016/j.ijbio mac.2017.08.142 otwiera się w nowej karcie
  12. Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561-568. https ://doi.org/10.1016/j.carbp ol.2014.06.075 otwiera się w nowej karcie
  13. Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217-233. https ://doi. org/10.1016/j.jare.2017.01.005 otwiera się w nowej karcie
  14. Witold Brostow HEH, Lobland HEH (2017) Materials: introduction and applications. Wiley, Hoboken otwiera się w nowej karcie
  15. Chua AWC, Ma DR, Song IC et al (2008) In vitro evaluation of fibrin mat and Tegaderm™ wound dressing for the delivery of keratinocytes-implications of their use to treat burns. Burns 34:175- 180. https ://doi.org/10.1016/j.burns .2007.07.009 otwiera się w nowej karcie
  16. Czemplik M, Kulma A, Szopa J (2013) The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol. https ://doi.org/10.1016/j.jaad.2011.06.028 otwiera się w nowej karcie
  17. Lin Y, Lee G, Chou C et al (2015) Stimulation of wound healing by PU/hydrogel composites con- taining fi broblast growth factor-2. J Mater Chem B Mater Biol Med 3:1931-1941. https ://doi. org/10.1039/C4TB0 1638F otwiera się w nowej karcie
  18. Oh S, Kim W, Kim S et al (2011) The preparation of polyurethane foam combined with pH-sen- sitive alginate/bentonite hydrogel for wound dressings. Fibers Polymers 12:159-165. https ://doi. org/10.1007/s1222 1-011-0159-4 otwiera się w nowej karcie
  19. Manikandan A, Prasath M, Kumar S (2017) Formation of functional nano fi brous electrospun polyurethane and murivenna oil with improved haemocompatibility for wound healing. Polym Test 61:106-113. https ://doi.org/10.1016/j.polym ertes ting.2017.05.008 otwiera się w nowej karcie
  20. Patel DK, Rana D, Aswal VK et al (2015) Influence of graphene on self-assembly of polyu- rethane and evaluation of its biomedical properties. Polymer (Guildf) 65:183-192. https ://doi. org/10.1016/j.polym er.2015.03.076 otwiera się w nowej karcie
  21. Tsai M, Hung K, Hung S, Hsu S (2015) Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf B Biointerfaces 125:34-44. https ://doi.org/10.1016/j.colsu rfb.2014.11.003 otwiera się w nowej karcie
  22. Mi H, Salick MR, Jing X et al (2013) Characterization of thermoplastic polyurethane/polylac- tic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng, C 33:4767-4776. https ://doi.org/10.1016/j.msec.2013.07.037 otwiera się w nowej karcie
  23. Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng, C 48:586-591. https ://doi.org/10.1016/j.msec.2014.12.037 otwiera się w nowej karcie
  24. Mi H, Jing X, Salick MR et al (2016) Carbon nanotube (CNT) and nano fi brillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. J Mech Behav Biomed Mater 62:417- 427. https ://doi.org/10.1016/j.jmbbm .2016.05.026 otwiera się w nowej karcie
  25. Gabriel LP, Amélia A, Macedo M et al (2017) Electrospun polyurethane membranes for tis- sue engineering applications. Mater Sci Eng, C 72:113-117. https ://doi.org/10.1016/j. msec.2016.11.057 otwiera się w nowej karcie
  26. Hung K, Tseng C, Dai L, Hsu S (2016) Biomaterials water-based polyurethane 3D printed scaf- folds with controlled release function for customized cartilage tissue engineering. Biomaterials 83:156-168. https ://doi.org/10.1016/j.bioma teria ls.2016.01.019 otwiera się w nowej karcie
  27. Benítez JM, Montáns FJ (2017) The mechanical behavior of skin: structures and models for the finite element analysis. Comput Struct 190:75-107. https ://doi.org/10.1016/j.comps truc.2017.05.003 otwiera się w nowej karcie
  28. Kucińska-Lipka J, Gubanska I, Skwarska A (2017) Microporous polyurethane thin layer as a promising scaffold for tissue engineering. Polymers (Basel) 9:277. https ://doi.org/10.3390/polym 90702 77 otwiera się w nowej karcie
  29. Shen S, Zhang T, Yuan Y et al (2015) Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 47:196-202. https ://doi.org/10.1016/j.foodc ont.2014.07.003 otwiera się w nowej karcie
  30. Al-Bayati FA, Muthanna MJ (2009) Isolation, identification, and purification of cinnamaldehyde from cinnamomum zeylanicum bark oil. An antibacterial study. Pharm Biol. 47(1): 61-66. https ://doi.org/10.1080/13880 20080 24306 07 otwiera się w nowej karcie
  31. Shreaz S, Wani WA, Behbehani JM et al (2016) Fitoterapia Cinnamaldehyde and its deriva- tives, a novel class of antifungal agents. Fitoterapia 112:116-131. https ://doi.org/10.1016/j.fitot e.2016.05.016 otwiera się w nowej karcie
  32. Kwon YS, Lee SH, Hwang YC et al (2017) Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold cross-linked with cinnamaldehyde. Int Endod J. https ://doi. org/10.1111/iej.12592 otwiera się w nowej karcie
  33. Nostro A, Scaffaro R, Arrigo MD, Botta L, Filocamo A, Marino A (2012) Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl Microb Cell Physiol. https ://doi.org/10.1007/s0025 3-012-4091-3 otwiera się w nowej karcie
  34. Song Y-R, Choi M-S, Choi G-W, Park I-K, Oh C-S (2016) Antibacterial activity of cinna- maldehyde and estragole extracted from plant essential oils against pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol J 32(4):363-370. https ://doi. org/10.5423/PPJ.NT.01.2016.0006 otwiera się w nowej karcie
  35. Bauchan G, Lo YM (2014) Antibacterial activity of cinnamaldehyde and sporan against Escheri- chia coli O157:H7 and Salmonella. J Food Process Preserv 38:749-757. https ://doi.org/10.1111/ jfpp.12026 otwiera się w nowej karcie
  36. Sanla-Ead N, Jangchud A, Chonhenchob V, Suppakul P (2012) Antimicrobial activity of cin- namaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films. Packag Technol Sci 25:7-17. https ://doi.org/10.1002/pts.952 otwiera się w nowej karcie
  37. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451-1474. https ://doi.org/10.3390/ph612 1451 otwiera się w nowej karcie
  38. Zhang Hongmei, Zhou Wenyuan, Zhang Wenyan, Yang Anlin, Liu Yanlan, Jiang Yan, Shao- song Huang JS (2014) Inhibitory effects of citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella enteritidis. J Food Prot 77:927-933. https ://doi.org/10.4315/0362-028X.JFP-13-497 otwiera się w nowej karcie
  39. Jia P, Xue YJ, Duan XJ, Shao SH (2011) Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol. https ://doi. org/10.1111/j.1472-765X.2011.03122 .x otwiera się w nowej karcie
  40. Dewi AH, Ana ID, Jansen J (2016) Calcium carbonate hydrogel construct with cynnamaldehyde incorporated to control inflammation during surgical procedure. J Biomed Mater Res, Part A 104:768-774. https ://doi.org/10.1002/jbm.a.35571 otwiera się w nowej karcie
  41. Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 31:247-256. https ://doi. org/10.1590/S1517 -83822 00000 04000 03 otwiera się w nowej karcie
  42. Brostow W, Brumbley S, Gahutishvili M, Hnatchuk N (2016) Arsenic antibacterial polymer com- posites based on poly(vinyl chloride). Macromol Symp 365:258-262. https ://doi.org/10.1002/ masy.20165 0002 otwiera się w nowej karcie
  43. Barbakadze K, Brostow W, Datashvili T et al (2018) Antibiocorrosive epoxy-based coatings with low friction and high scratch resistance. Wear 394-395:228-235. https ://doi.org/10.1016/j. wear.2017.08.006 otwiera się w nowej karcie
  44. Kucinska-Lipka J, Gubanska I, Strankowski M et al (2017) Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tis- sue regeneration. Mater Sci Eng, C 75:671-681. https ://doi.org/10.1016/j.msec.2017.02.052 otwiera się w nowej karcie
  45. Kucińska-Lipka J, Gubanska I, Korchynskyi O et al (2017) The influence of calcium glycer- ophosphate (GPCa) modifier on physicochemical, mechanical and biological performance of pol- yurethanes applicable as biomaterials for bone tissue scaffolds fabrication. Polymers 9(8):329. https ://doi.org/10.3390/polym 90803 29 otwiera się w nowej karcie
  46. Špirková Milena, Poręba Rafał, Pavličević Jelena, Kobera Libor, Josef Baldrian MP (2012) Ali- phatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. J Appl Polym Sci 126:1016-1030
  47. Yilgor I, Yilgor E, Guler IG et al (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer (Guildf) 47:4105-4114. https ://doi.org/10.1016/j.polym er.2006.02.027 otwiera się w nowej karcie
  48. Tian Y, Zhu Y, Bashari M et al (2013) Identification and releasing characteristics of high-amyl- ose corn starch-cinnamaldehyde inclusion complex prepared using ultrasound treatment. Carbo- hydr Polym 91:586-589. https ://doi.org/10.1016/j.carbp ol.2012.09.008 otwiera się w nowej karcie
  49. Manukumar HM, Umesha S (2017) Photocrosslinker technology: an antimicrobial efficacy of cinnamaldehyde cross-linked low-density polyethylene (Cin-C-LDPE) as a novel food wrapper. Food Res Int 102:144-155. https ://doi.org/10.1016/j.foodr es.2017.09.095 otwiera się w nowej karcie
  50. Yang Z, Chai K, Ji H (2011) Selective inclusion and separation of cinnamaldehyde and ben- zaldehyde by insoluble β-cyclodextrin polymer. Sep Purif Technol 80:209-216. https ://doi. org/10.1016/j.seppu r.2011.04.017 otwiera się w nowej karcie
  51. Chen H, Hu X, Chen E et al (2016) Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll 61:662-671. https ://doi.org/10.1016/j. foodh yd.2016.06.034 otwiera się w nowej karcie
  52. Smith BC (2016) Group wavenumbers and an introduction to the spectroscopy of benzene rings. Spectroscopy 31:34-37
  53. Cristina A, Souza D, Dias AMA et al (2014) Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydr Polym 102:830-837. https ://doi.org/10.1016/j.carbp ol.2013.10.082 otwiera się w nowej karcie
  54. Otoni CG, De Moura MR, Aouada FA et al (2014) Food hydrocolloids antimicrobial and physi- cal-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible compos- ite films. Food Hydrocoll 41:188-194. https ://doi.org/10.1016/j.foodh yd.2014.04.013 otwiera się w nowej karcie
  55. Gao H (2017) Characteristics of poly vinyl alcohol films crosslinked by cinnamaldehyde with improved transparency and water resistance. J Appl Polym Sci 24:1-8. https ://doi.org/10.1002/ app.45324 otwiera się w nowej karcie
  56. Then C, Stassen B, Depta K, Silber G (2017) New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo. J Mech Behav Biomed Mater 71:68-79. https ://doi.org/10.1016/j.jmbbm .2017.02.022 otwiera się w nowej karcie
  57. Brostow W, Hagg Lobland HE, Narkis M (2006) Sliding wear, viscoelasticity, and brittleness of polymers. J Mater Res 21:2422-2428. https ://doi.org/10.1557/jmr.2006.0300 otwiera się w nowej karcie
  58. Brostow W, Lobland HEH, Narkis M (2011) The concept of materials brittleness and its applica- tions. Polym Bull 67:1697-1707. https ://doi.org/10.1007/s0028 9-011-0573-1 otwiera się w nowej karcie
  59. Brostow W, Hagg Lobland HE (2010) Brittleness of materials: implications for composites and a relation to impact strength. J Mater Sci 45:242-250. https ://doi.org/10.1007/s1085 3-009-3926-5 otwiera się w nowej karcie
  60. Ma L, Gao C, Mao Z et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833-4841. https ://doi.org/10.1016/S0142 -9612(03)00374 -0 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 87 razy

Publikacje, które mogą cię zainteresować

Meta Tagi