Applicability of Emotion Recognition and Induction Methods to Study the Behavior of Programmers - Publikacja - MOST Wiedzy

Wyszukiwarka

Applicability of Emotion Recognition and Induction Methods to Study the Behavior of Programmers

Abstrakt

Recent studies in the field of software engineering have shown that positive emotions can increase and negative emotions decrease the productivity of programmers. In the field of affective computing, many methods and tools to recognize the emotions of computer users were proposed. However, it has not been verified yet which of them can be used to monitor the emotional states of software developers. The paper describes a study carried out on a group of 35 articipants to determine which of these methods can be used during programming. During the study, data from multiple sensors that are commonly used in methods of emotional recognition were collected. The participants were extensively questioned about the sensors’ invasiveness during programming. This allowed us to determine which of them are applicable in the work of programmers. In addition, it was verified which methods are suitable for use in the work environment and which are only suitable in the laboratory. Moreover, three methods for inducing negative emotions have been proposed, and their effectiveness has been verified.

Cytowania

  • 9

    CrossRef

  • 9

    Web of Science

  • 1 0

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Applied Sciences-Basel nr 8, wydanie 3, strony 1 - 19,
ISSN: 2076-3417
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Wróbel M.: Applicability of Emotion Recognition and Induction Methods to Study the Behavior of Programmers// Applied Sciences-Basel. -Vol. 8, iss. 3 (2018), s.1-19
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/app8030323
Bibliografia: test
  1. ICT Specialists-Statistics on Hard-To-Fill Vacancies in Enterprises-Eurostat Report. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/ICT_specialists_-_statistics_on_hard-to-fill_ vacancies_in_enterprises. (accessed on 30 November 2017). otwiera się w nowej karcie
  2. Denning, P.J. Moods. Commun. ACM 2012, 55, 33-35. otwiera się w nowej karcie
  3. Graziotin, D.; Wang, X.; Abrahamsson, P. Do feelings matter? On the correlation of affects and the self-assessed productivity in software engineering. J. Softw. Evol. Process 2015, 27, 467-487. otwiera się w nowej karcie
  4. Müller, S.C.; Fritz, T. Stuck and frustrated or in flow and happy: Sensing developers' emotions and progress. In Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), Florence, Italy, 16-24 May 2015; Volume 1, pp. 688-699. otwiera się w nowej karcie
  5. Fountaine, A.; Sharif, B. Emotional awareness in software development: Theory and measurement. In Proceedings of the IEEE/ACM 2nd International Workshop on Emotion Awareness in Software Engineering, Buenos Aires, Argentina, 21 May 2017; pp. 28-31. otwiera się w nowej karcie
  6. Graziotin, D.; Fagerholm, F.; Wang, X.; Abrahamsson, P. Consequences of unhappiness while developing software. In Proceedings of the 2nd International Workshop on Emotion Awareness in Software Engineering, Buenos Aires, Argentina, 20-28 May 2017; IEEE Press: Piscataway, NJ, USA, 2017; pp. 42-47. otwiera się w nowej karcie
  7. Uhrig, M.K.; Trautmann, N.; Baumgärtner, U.; Treede, R.D.; Henrich, F.; Hiller, W.; Marschall, S. Emotion elicitation: A comparison of pictures and films. Front. Psychol. 2016, 7, 180. otwiera się w nowej karcie
  8. Fritz, T.; Müller, S.C. Leveraging biometric data to boost software developer productivity. In Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Suita, Japan, 14-18 March 2016; Volume 5, pp. 66-77. otwiera się w nowej karcie
  9. Müller, S.C.; Fritz, T. Using (bio) metrics to predict code quality online. In Proceedings of the 38th International Conference on Software Engineering, Austin, TX, USA, 14-22 May 2016; pp. 452-463. otwiera się w nowej karcie
  10. Landowska, A.; Wróbel, M.R. Affective reactions to playing digital games. In Proceedings of the 2015 8th International Conference on Human System Interactions (HSI), Warsaw, Poland, 25-27 June 2015; otwiera się w nowej karcie
  11. Fritz, T.; Begel, A.; Müller, S.C.; Yigit-Elliott, S.; Züger, M. Using psycho-physiological measures to assess task difficulty in software development. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May-7 June 2014; pp. 402-413. otwiera się w nowej karcie
  12. Van Boxtel, A. Facial EMG as a tool for inferring affective states. In Proceedings of Measuring Behavior. Noldus Information Technology Wageningen, Eindhoven, The Netherland, 24-27 August 2010; pp. 104-108.
  13. Tan, J.W.; Walter, S.; Scheck, A.; Hrabal, D.; Hoffmann, H.; Kessler, H.; Traue, H.C. Facial electromyography (fEMG) activities in response to affective visual stimulation. In Proceedings of the 2011 IEEE Workshop on Affective Computational Intelligence (WACI), Paris, France, 11-15 April 2011; pp. 1-5. otwiera się w nowej karcie
  14. Bhandari, U.; Neben, T.; Chang, K.; Chua, W.Y. Effects of interface design factors on affective responses and quality evaluations in mobile applications. Comput. Hum. Behav. 2017, 72, 525-534. otwiera się w nowej karcie
  15. Sharif, B.; Maletic, J.I. An eye tracking study on camelcase and under_score identifier styles. In Proceedings of the 2010 IEEE 18th International Conference on Program Comprehension (ICPC), Braga, Portugal, 30 June-2 July 2010; pp. 196-205. otwiera się w nowej karcie
  16. Rodeghero, P.; McMillan, C.; McBurney, P.W.; Bosch, N.; D'Mello, S. Improving automated source code summarization via an eye-tracking study of programmers. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May-7 June 2014; pp. 390-401. otwiera się w nowej karcie
  17. Sharif, B.; Falcone, M.; Maletic, J.I. An eye-tracking study on the role of scan time in finding source code defects. In Proceedings of the Symposium on Eye Tracking Research and Applications, Santa Barbara, CA, USA, 28-30 March 2012; pp. 381-384. otwiera się w nowej karcie
  18. Sharafi, Z.; Shaffer, T.; Sharif, B.; Guéhéneuc, Y.G. Eye-tracking Metrics in Software Engineering. In Proceedings of the 2015 Asia-Pacific Software Engineering Conference (APSEC), New Delhi, India, 1-4 December 2015; pp. 96-103. otwiera się w nowej karcie
  19. Kevic, K.; Walters, B.; Shaffer, T.; Sharif, B.; Shepherd, D.C.; Fritz, T. Eye gaze and interaction contexts for change tasks-Observations and potential. J. Syst. Softw. 2017, 128, 252-266. otwiera się w nowej karcie
  20. Bednarik, R.; Tukiainen, M. An eye-tracking methodology for characterizing program comprehension processes. In Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, San Diego, CA, USA, 27-29 March 2006; pp. 125-132. otwiera się w nowej karcie
  21. Shaffer, T.R.; Wise, J.L.; Walters, B.M.; Müller, S.C.; Falcone, M.; Sharif, B. Itrace: Enabling eye tracking on software artifacts within the ide to support software engineering tasks. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 30 August-4 September 2015; pp. 954-957. otwiera się w nowej karcie
  22. Fragopanagos, N.; Taylor, J.G. Emotion recognition in human-Computer interaction. Neural Netw. 2005, 18, 389-405. otwiera się w nowej karcie
  23. Gunes, H.; Piccardi, M. Affect recognition from face and body: Early fusion vs. late fusion. In Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, USA, 12 October 2005; Volume 4, pp. 3437-3443. otwiera się w nowej karcie
  24. Majumder, A.; Behera, L.; Subramanian, V.K. Emotion recognition from geometric facial features using self-organizing map. Pattern Recognit. 2014, 47, 1282-1293. otwiera się w nowej karcie
  25. Sayette, M.A.; Cohn, J.F.; Wertz, J.M.; Perrott, M.A.; Parrott, D.J. A psychometric evaluation of the facial action coding system for assessing spontaneous expression. J. Nonverbal Behav. 2001, 25, 167-185. otwiera się w nowej karcie
  26. Ooi, C.S.; Seng, K.P.; Ang, L.M.; Chew, L.W. A new approach of audio emotion recognition. Expert Syst. Appl. 2014, 41, 5858-5869. otwiera się w nowej karcie
  27. Eyben, F.; Wöllmer, M.; Schuller, B. OpenEAR-Introducing the Munich open-source emotion and affect recognition toolkit. In Proceedings of the 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, Amsterdam, The Netherlands, 10-12 September 2009; pp. 1-6. otwiera się w nowej karcie
  28. Kołakowska, A. A review of emotion recognition methods based on keystroke dynamics and mouse movements. In Proceedings of the 2013 The 6th International Conference on Human System Interaction (HSI), Sopot, Poland, 6-8 June 2013; pp. 548-555. otwiera się w nowej karcie
  29. Kołakowska, A. Towards detecting programmers' stress on the basis of keystroke dynamics. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11-14 September 2016; pp. 1621-1626. otwiera się w nowej karcie
  30. Khezri, M.; Firoozabadi, M.; Sharafat, A.R. Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals. Comput. Methods Programs Biomed. 2015, 122, 149-164. otwiera się w nowej karcie
  31. Crk, I.; Kluthe, T.; Stefik, A. Understanding programming expertise: An empirical study of phasic brain wave changes. ACM Trans. Comput.-Hum. Interact. (TOCHI) 2016, 23, 2. otwiera się w nowej karcie
  32. Landowska, A. Emotion monitor-concept, construction and lessons learned. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13-16 September 2015; otwiera się w nowej karcie
  33. Novielli, N.; Calefato, F.; Lanubile, F. Towards discovering the role of emotions in stack overflow. In Proceedings of the 6th International Workshop on Social Software Engineering, Hong Kong, China, 17 November 2014; pp. 33-36. otwiera się w nowej karcie
  34. Jurado, F.; Rodriguez, P. Sentiment Analysis in monitoring software development processes: An exploratory case study on GitHub's project issues. J. Syst. Softw. 2015, 104, 82-89. otwiera się w nowej karcie
  35. Brodny, G.; Kołakowska, A.; Landowska, A.; Szwoch, M.; Szwoch, W.; Wróbel, M.R. Comparison of selected off-the-shelf solutions for emotion recognition based on facial expressions. In Proceedings of the 2016 9th International Conference on Human System Interactions (HSI), Portsmouth, UK, 6-8 July 2016; pp. 397-404. otwiera się w nowej karcie
  36. Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behavior Ther. Exp. Psychiatry 1994, 25, 49-59. otwiera się w nowej karcie
  37. Quigley, K.; Lindquist, K.A.; Barrett, L.F. Inducing and measuring emotion and affect: Tips, tricks, and secrets. In Handbook of Research Methods in Social and Personality Psychology; Cambridge University Press: Cambridge, UK, 2014; pp. 220-252. otwiera się w nowej karcie
  38. Picard, R.W. Affective computing: From laughter to IEEE. IEEE Trans. Affect. Comput. 2010, 1, 11-17. otwiera się w nowej karcie
  39. Landowska, A. Emotion monitoring-Verification of physiological characteristics measurement procedures. Metrol. Meas. Syst. 2014, 21, 719-732. c 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 55 razy

Publikacje, które mogą cię zainteresować

Meta Tagi