Artificial-Hand Technology—Current State of Knowledge in Designing and Forecasting Changes - Publikacja - MOST Wiedzy

Wyszukiwarka

Artificial-Hand Technology—Current State of Knowledge in Designing and Forecasting Changes

Abstrakt

The subject of human-hand versatility has been intensively investigated for many years. Emerging robotic constructions change continuously in order to mimic natural mechanisms as accurately as possible. Such an attitude is motivated by the demand for humanoid robots with sophisticated end effectors and highly biomimic prostheses. This paper provides wide analysis of more than 80 devices that have been created over the last 40 years. It compares both the mechanical structure and various actuators from conventional DC motors and servomechanisms, through pneumatic muscles, to soft actuators and artificial muscles. Described measured factors include angles, forces, torques, tensions, and tactiles. Furthermore, the appropriate statistics of kinematic configuration, as well as the type or number of drive units and sensory systems, show not only recent problems, but also trends that will be followed in the future.

Cytowania

  • 8

    CrossRef

  • 5

    Web of Science

  • 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 64 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Applied Sciences-Basel nr 9,
ISSN: 2076-3417
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Szkopek J., Redlarski G.: Artificial-Hand Technology—Current State of Knowledge in Designing and Forecasting Changes// Applied Sciences-Basel -Vol. 9,iss. 19 (2019), s.4090-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/app9194090
Bibliografia: test
  1. Hwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the future of science, engineering, and medicine. Int. J. Nanomed. 2015, 10, 5701. [CrossRef] otwiera się w nowej karcie
  2. Gebeshuber, I.C.; Stachelberger, H.; Ganji, B.A.; Fu, D.C.; Yunas, J.; Majlis, B.Y. Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv. Mater. Res. 2009, 74, 265-268. [CrossRef] otwiera się w nowej karcie
  3. Vincent, J.F.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.K. Biomimetics: Its practice and theory. J. R. Soc. Interface 2006, 3, 471-482. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Shimomura, M. The New Trends in Next Generation Biomimetics Material Technology: Learning from Biodiversity. Sci. Technol. Trends Q. Rev. 2010, 37, 53-75. otwiera się w nowej karcie
  5. Cho, K.J.; Wood, R. Biomimetic Robots. In Springer Handbook of Robotics; Springer International Publishing: Cham, Switzerland, 2016; pp. 543-574. otwiera się w nowej karcie
  6. Paulson, L.D. Biomimetic Robots. Computer 2004, 37, 48-53. [CrossRef] otwiera się w nowej karcie
  7. Seok, S.; Wang, A.; Chuah, M.Y.; Otten, D.; Lang, J.; Kim, S. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6-10 May 2013; pp. 3307-3312. otwiera się w nowej karcie
  8. Kamamichi, N.; Yamakita, M.; Asaka, K.; Luo, Z.W. A snake-like swimming robot using IPMC actuator/sensor. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15-19 May 2006; Volume 2006, pp. 1812-1817. otwiera się w nowej karcie
  9. Neveln, I.D.; Bai, Y.; Snyder, J.B.; Solberg, J.R.; Curet, O.M.; Lynch, K.M.; MacIver, M.A. Biomimetic and bio-inspired robotics in electric fish research. J. Exp. Biol. 2013, 216, 2501-2514. [CrossRef] [PubMed] otwiera się w nowej karcie
  10. Lin, P.C.; Liu, G.H.; Lin, H.Y.; Lin, H.Y.; Chen, S.T. A Bio-Inspired Hopping Kangaroo Robot with an Active Tail. J. Bionic Eng. 2014, 11, 541-555. [CrossRef] otwiera się w nowej karcie
  11. Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603-607. [CrossRef] otwiera się w nowej karcie
  12. Lambrecht, B.G.; Horchler, A.D.; Quinn, R.D. A small, insect-inspired robot that runs and jumps. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005; Volume 2005, pp. 1240-1245. otwiera się w nowej karcie
  13. Dougherty, P.J.; DeMaio, M. Major General Norman T. Kirk and Amputee Care During World War II. Clin. Orthop. Relat. Res. 2014, 472, 3107. [CrossRef] otwiera się w nowej karcie
  14. Watve, S.; Dodd, G.; MacDonald, R.; Stoppard, E.R. Upper limb prosthetic rehabilitation. Orthop. Trauma 2011, 25, 135-142. [CrossRef] otwiera się w nowej karcie
  15. Billock, J.N. Upper Limb Prosthetic Terminal Devices: Hands Versus Hooks. Clin. Prosthetics Orthot. 1986, 10, 57-65.
  16. Huinink, L.H.; Bouwsema, H.; Plettenburg, D.H.; Van der Sluis, C.K.; Bongers, R.M. Learning to use a body-powered prosthesis: Changes in functionality and kinematics. J. Neuroeng. Rehabil. 2016, 13, 90. [CrossRef] [PubMed] otwiera się w nowej karcie
  17. Body-Powered Upper Limb Prostheses|Ottobock Export. Available online: https://www.ottobock- export.com/en/prosthetics/upper-limb/solution-overview/arm-prostheses-body-powered/ (accessed on 30 September 2019). otwiera się w nowej karcie
  18. Childress, D. Historical Aspects of Powered Limb Prostheses. Clin. Prosthetics Orthot. 1985, 9, 2-13.
  19. Agrawal, S. Hands: Human To Robotic;
  20. Lovchik, C.; Diftler, M. The Robonaut hand: A dexterous robot hand for space. In Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, MI, USA, 10-15 May 1999; pp. 907-912. otwiera się w nowej karcie
  21. Crowder, R. A whole arm manipulator for hazardous environments. In Proceedings of the 10th Annual British Robot Association Conference, Birmingham, UK, 12-14 May 1987; pp. 142-153. otwiera się w nowej karcie
  22. Spudis, P.D.; Taylor, G.J. The Roles of Humans and Robots Field Geologists on the Moon. In 2nd Conference on Lunar Bases and Space Activities; otwiera się w nowej karcie
  23. Johnson Space Center, NASA: Houston, TX, USA, 1992; pp. 307-313. otwiera się w nowej karcie
  24. Jau, B.M. Dexterous telemanipulation with four fingered hand system. In Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21-27 May 1995; Volume 1, pp. 338-343. otwiera się w nowej karcie
  25. Ali, M.S.; Engler, C. NASA Technical Memorandum System Description Document for the Anthrobot-2: A Dexterous Robot Hand; Technical report; NASA: Washington, DC, USA, 1991.
  26. Hammock, M.L.; Chortos, A.; Tee, B.C.K.; Tok, J.B.H.; Bao, Z. 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997-6038. [CrossRef] [PubMed] otwiera się w nowej karcie
  27. Hernandez, N.V.; Davila, J.G.; Garza-Ulloa, J.; Rangel, P.; Torres, J.A. Development of a design theory & methodology model for mechatronics. In Proceedings of the ASEE Annual Conference and Exposition, San Antonio, TX, USA, 10-13 June 2012.
  28. Bird, H. Approaches to electronic miniaturization. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1995, 18, 274-278. [CrossRef] otwiera się w nowej karcie
  29. Yaniger, S. Force Sensing Resistors: A Review Of The Technology. In Proceedings of the Electro International, New York, NY, USA, 16-18 April 1991; pp. 666-668. otwiera się w nowej karcie
  30. Shintake, J.; Piskarev, E.; Jeong, S.H.; Floreano, D. Ultrastretchable Strain Sensors Using Carbon Black-Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors. Adv. Mater. Technol. 2018, 3. [CrossRef] otwiera się w nowej karcie
  31. Ge, J.; Sun, L.; Zhang, F.R.; Zhang, Y.; Shi, L.A.; Zhao, H.Y.; Zhu, H.W.; Jiang, H.L.; Yu, S.H. A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties. Adv. Mater. 2016, 28, 722-728. [CrossRef] [PubMed] otwiera się w nowej karcie
  32. Haines, C.S.; Lima, M.D.; Li, N.; Spinks, G.M.; Foroughi, J.; Madden, J.D.; Kim, S.H.; Fang, S.; De Andrade, M.J.; Göktepe, F.; et al. Artificial muscles from fishing line and sewing thread. Science 2014, 343, 868-872. [CrossRef] otwiera się w nowej karcie
  33. Brochu, P.; Pei, Q. Advances in Dielectric Elastomers for Actuators and Artificial Muscles. otwiera się w nowej karcie
  34. Macromol. Rapid Commun. 2010, 31, 10-36. [CrossRef] [PubMed] otwiera się w nowej karcie
  35. Kumar, P.; Lagoudas, D. Introduction to Shape Memory Alloys. In Metal and Ceramic Biomaterials: Volume II Strength and Surface; CRC Press: Boca Raton, FL, USA, 2008; pp. 63-90.
  36. Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Adv. Mater. 2016, 28, 231-238. [CrossRef] otwiera się w nowej karcie
  37. Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [CrossRef] [PubMed] otwiera się w nowej karcie
  38. Kawasaki, H.; Komatsu, T.; Uchiyama, K. Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans. Mech. 2002, 7, 296-303. [CrossRef] otwiera się w nowej karcie
  39. Cho, K.J.; Rosmarin, J.; Asada, H. SBC hand: A lightweight robotic hand with an SMA actuator array implementing C-segmentation. In Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April 2007; pp. 921-926. otwiera się w nowej karcie
  40. Jacobsen, S.; Johnson, R.; Biggers, K.; Iversen, E.; Knutti, D. Design of the Utah/M.I.T. Dextrous Hand. In Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 7-10 April 1986; Volume 3, pp. 1520-1532. otwiera się w nowej karcie
  41. Yoshikawa, M.; Sato, R.; Higashihara, T.; Ogasawara, T.; Kawashima, N. Rehand: Realistic electric prosthetic hand created with a 3D printer. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milano, Italy, 25-29 August 2015; Volume 40, pp. 2470-2473. otwiera się w nowej karcie
  42. You, W.S.; Lee, Y.H.; Oh, H.S.; Kang, G.; Choi, H.R. Design of a 3D-printable, robust anthropomorphic robot hand including intermetacarpal joints. Intell. Serv. Robot. 2019, 12, 1-16. [CrossRef] otwiera się w nowej karcie
  43. Kawamura, K.; Wilkes, D.M.; Kawamura, K.; Pack, T.; Bishay, M.; Barile, J. Humanoids: Future robots for home and factory Quantitative assessment of sensory function in high-risk infants and children View project Array Processing View project Humanoids: Future Robots for Home and Factory. In Proceedings of the First International Symposium on Humanoid Robots, Tokyo, Japan, 30-31 October 1996; pp. 53-62. otwiera się w nowej karcie
  44. Cresswell, K.; Cunningham-Burley, S.; Sheikh, A. Health care robotics: Qualitative exploration of key challenges and future directions. J. Med. Internet Res. 2018, 20. [CrossRef] [PubMed] otwiera się w nowej karcie
  45. Huntsberger, T.; Rodriguez, G.; Schenker, P.S. Robotics challenges for robotic and human Mars exploration. In Proceedings of the 4th International Conference and Exposition on Robotics for Challenging Situations and Environments-Robotics 2000, Albuquerque, NM, USA, 27 February-2 March 2000; Volume 299, pp. 340-346. otwiera się w nowej karcie
  46. Landis, G.A. Robots and humans: Synergy in planetary exploration. Acta Astronaut. 2004, 55, 985-990. [CrossRef] [PubMed] otwiera się w nowej karcie
  47. Takanishi, A.; Cabibihan, J.; Matsumoto, M.; Dario, P.; Roccella, S.; Zecca, M.; Carrozza, M.; Ltoh, K.; Cappiello, G.; Miwa, H. Design, fabrication and preliminary results of a novel anthropomorphic hand for humanoid robotics: RCH-1. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September-2 October 2004; Volime 1, pp. 266-271.
  48. Broadbent, E.; Stafford, R.; MacDonald, B. Acceptance of healthcare robots for the older population: Review and future directions. Int. J. Soc. Robot. 2009, 1, 319-330. [CrossRef] otwiera się w nowej karcie
  49. Joseph, A.; Christian, B.; Abiodun, A.A.; Oyawale, F. A review on humanoid robotics in healthcare. In Proceedings of the MATEC Web of Conferences, Kuala Lumpur, Malaysia, 28-30 November 2017, Volume 153, p. 02004. otwiera się w nowej karcie
  50. Szkopek, J. Comparison of Artificial Hands Developed in Years 1980-2019. Available online: https: //doi.org/10.5281/zenodo.3360259 (accessed on 30 September 2019). otwiera się w nowej karcie
  51. Netter, F.H. Atlas of Human Anatomy;
  52. Saunders/Elsevier: Amsterdam, The Netherlands, 2014.
  53. Komatsu, I.; Lubahn, J.D. Anatomy and Biomechanics of the Thumb Carpometacarpal Joint. otwiera się w nowej karcie
  54. Oper. Tech. Orthop. 2018, 28, 1-5. [CrossRef] otwiera się w nowej karcie
  55. Levangie, P.K.; Norkin, C.C. Joint Structure and Function: A Comprehensive Analysis; F.A. Davis Company: Philadelphia, PA, USA, 2011; p. 320.
  56. Parida, P.K.; Biswal, B.B. Design and Analysis of a Multifingered Robot Hand. IAES Int. J. Robot. Autom. (IJRA) 2012, 1. [CrossRef] otwiera się w nowej karcie
  57. Peña-Pitarch, E.; Falguera, N.T.; Yang, J.J. Virtual human hand: Model and kinematics. otwiera się w nowej karcie
  58. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 568-579. [CrossRef] otwiera się w nowej karcie
  59. Krans, J.L. How Do Muscles Contract? What Molecules Are Necessary for a Tissue to Change Its Shape? Available online: https://www.nature.com/scitable/topicpage/the-sliding-filament-theory-of-muscle- contraction-14567666 (accessed on 28 June 2019).
  60. Hansen, J.T.; Koeppen, B.M. Netter's Atlas of Human Physiology; Saunders: Philadelphia, PA, USA, 2002.
  61. Hu, D.; Howard, D.; Ren, L. Biomechanical analysis of the human finger extensor mechanism during isometric pressing. PLoS ONE 2014, 9. [CrossRef] otwiera się w nowej karcie
  62. Chappell, P.H.; Cranny, A.; Cotton, D.P.; White, N.M.; Beeby, S.P. Sensory motor systems of artificial and natural hands. Int. J. Surg. 2007, 5, 436-440. [CrossRef] [PubMed] otwiera się w nowej karcie
  63. Abraira, V.E.; Ginty, D.D. The Sensory Neurons of Touch. Neuron 2013, 79, 618-639. [CrossRef] [PubMed] otwiera się w nowej karcie
  64. Owens, D.M.; Lumpkin, E.A. Diversification and specialization of touch receptors in skin. otwiera się w nowej karcie
  65. Cold Spring Harb. Perspect. Med. 2014, 4. [CrossRef] otwiera się w nowej karcie
  66. Silvera-Tawil, D.; Rye, D.; Velonaki, M. Artificial skin and tactile sensing for socially interactive robots: A review. Robot. Auton. Syst. 2015, 63, 230-243. [CrossRef] otwiera się w nowej karcie
  67. Napier, J.R. The prehensile movements of the human hand. J. Bone Jt. Surgery. Br. Vol. 1956, 38, 902-913. [CrossRef] otwiera się w nowej karcie
  68. Cutkosky, M.R. On Grasp Choice, grasp Models, and the Design of Hands for Manufacturing Tasks. IEEE Trans. Robot. Autom. 1989, 5, 269-279. [CrossRef] otwiera się w nowej karcie
  69. Feix, T.; Romero, J.; Schmiedmayer, H.B.; Dollar, A.M.; Kragic, D. The GRASP Taxonomy of Human Grasp Types. IEEE Trans. Hum. Mach. Syst. 2016, 46. [CrossRef] otwiera się w nowej karcie
  70. Light, C.M.; Chappell, P.H.; Kyberd, P.J. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Arch. Phys. Med. Rehabil. 2002, 83, 776-783. [CrossRef] otwiera się w nowej karcie
  71. Vazhapilli Sureshbabu, A.; Metta, G.; Parmiggiani, A. A Systematic Approach to Evaluating and Benchmarking Robotic Hands-The FFP Index. Robotics 2019, 8, 7. [CrossRef] otwiera się w nowej karcie
  72. Biagiotti, L.; Lotti, F.; Melchiorri, C.; Vassura, G. How Far Is the Human Hand? Technical Report; University of Bologna: Bologna, Italy, 2004.
  73. Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 1994; Volume 29, pp. 214-222.
  74. Childress, D.; Strysik, J. Myoelectrically Controlled Artificial Hand. U.S. Patent No 4,623,354, 18 November 1986. otwiera się w nowej karcie
  75. Loncaric, J.; de Comarmond, F.; Bartusek, J.; Pati, Y.; Tsakiris, D.; Yang, R. Modular Dextrous Hand; Technical Report; The University of Maryland: College Park, MD, USA, 1989. otwiera się w nowej karcie
  76. Monestier, J. Total Hand Prostheses. U.S. Patent No 4,685,929, 11 August 1987.
  77. Kargov, A.; Asfour, T.; Pylatiuk, C.; Oberle, R.; Klosek, H.; Schulz, S.; Regenstein, K.; Bretthauer, G.; Dillman, R. Development of an anthropomorphic hand for a mobile assistive robot. In Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June-1 July 2005; otwiera się w nowej karcie
  78. Dalley, S.A.; Wiste, T.E.; Withrow, T.J.; Goldfarb, M. Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME Trans. Mech. 2009, 14, 699-706. [CrossRef] otwiera się w nowej karcie
  79. Paik, J.K.; Shin, B.H.; Bang, Y.b.; Shim, Y.B. Development of an Anthropomorphic Robotic Arm and Hand for Interactive Humanoids. J. Bionic Eng. 2012, 9, 133-142. [CrossRef] otwiera się w nowej karcie
  80. Okada, T. Computer Control Of Multijointed Finger System For Precise Object-Handling. otwiera się w nowej karcie
  81. IEEE Trans. Syst. Man Cybern. 1982, 12, 289-299. [CrossRef] otwiera się w nowej karcie
  82. Loucks, C.; Starr, G.; Johnson, V.; Steele, J.; Boissiere, P. Modeling and control of the stanford/JPL hand. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March-3 April 1987; Volume 4, pp. 573-578. otwiera się w nowej karcie
  83. Guo, G.; Gruver, W.A.; Qian, X. A New Design for a Dextrous Robotic Hand Mechanism. IEEE Control Syst. 1992, 12, 35-38. [CrossRef] otwiera się w nowej karcie
  84. Crisman, J.D.; Kanojia, C.; Zeid, I. Graspar: A flexible, easily controllable robotic hand. IEEE Robot. Autom. Mag. 1996, 3, 32-38. [CrossRef] otwiera się w nowej karcie
  85. Jung, S.Y.; Kang, S.K.; Lee, M.J.; Moon, I. Design of robotic hand with tendon-driven three fingers. In Proceedings of the ICCAS 2007-International Conference on Control, Automation and Systems, Seoul, Korea, 17-20 October 2007; pp. 83-86.
  86. Zollo, L.; Roccella, S.; Guglielmelli, E.; Carrozza, M.C.; Dario, P. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans. Mech. 2007, 12, 418-429. [CrossRef] otwiera się w nowej karcie
  87. Price, A.D.; Jnifene, A.; Naguib, H.E. Design and control of a shape memory alloy based dexterous robot hand. Smart Mater. Struct. 2007, 16, 1401-1414. [CrossRef] otwiera się w nowej karcie
  88. Wang, L.; DelPreto, J.; Bhattacharyya, S.; Weisz, J.; Allen, P.K. A highly-underactuated robotic hand with force and joint angle sensors. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25-30 September 2011; pp. 1380-1385. otwiera się w nowej karcie
  89. Jau, B. Anthropomorphic Four Fingered Robot Hand And Its Glove Controller. In Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Philadelphia, PA, USA, 1-4 November 1990; pp. 1940-1941. otwiera się w nowej karcie
  90. Ramos, A.M.; Gravagne, I.A.; Walker, I.D. Goldfinger: A non-anthropomorphic, dextrous robot hand. In Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10-15 May 1999; Volume 2, pp. 913-919. otwiera się w nowej karcie
  91. Figliolini, G.; Rea, P. Ca.U.M.Ha. robotic hand (cassino-underactuated-multifinger-hand). In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland, 4-7 September 2007. otwiera się w nowej karcie
  92. Kaneko, K.; Harada, K.; Kanehiro, F. Development of multi-fingered hand for life-size humanoid robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 14 September 2007; Volume 26, pp. 913-920. otwiera się w nowej karcie
  93. Takeuchi, H.; Watanabe, T. Development of a multi-fingered robot hand with softness changeable skin mechanism. In Proceedings of the ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), Munich, Germany, 7-9 June 2010.
  94. Nagase, J.Y.; Wakimoto, S.; Satoh, T.; Saga, N.; Suzumori, K. Design of a variable-stiffness robotic hand using pneumatic soft rubber actuators. Smart Mater. Struct. 2011, 20. [CrossRef] otwiera się w nowej karcie
  95. Kim, E.H.; Lee, S.W.; Lee, Y.K. A dexterous robot hand with a bio-mimetic mechanism. Int. J. Precis. Eng. Manuf. 2011, 12, 227-235. [CrossRef] otwiera się w nowej karcie
  96. Mnyusiwalla, H.; Vulliez, P.; Gazeau, J.P.; Zeghloul, S. A New Dexterous Hand Based on Bio-Inspired Finger Design for Inside-Hand Manipulation. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 809-817. [CrossRef] otwiera się w nowej karcie
  97. Lee, D.H.; Park, J.H.; Park, S.W.; Baeg, M.H.; Bae, J.H. KITECH-Hand: A Highly Dexterous and Modularized Robotic Hand. IEEE/ASME Trans. Mech. 2017, 22, 876-887. [CrossRef] otwiera się w nowej karcie
  98. Vinogradov, O. Fundamentals of Kinematics and Dynamics of Machines and Mechanisms; CRC Press: Boca Raton, FL, USA, 2000; pp. 6-7. otwiera się w nowej karcie
  99. Vande Weghe, M.; Rogers, M.; Weissert, M.; Matsuoka, Y. The ACT Hand: Design of the skeletal structure. In Proceedings of the International Conference on Robotics & Automation, Kunming, China, 6-9 December 2004; pp. 3375-3379. otwiera się w nowej karcie
  100. Xu, Z.; Kumar, V.; Matsuoka, Y.; Todorov, E. Design of an anthropomorphic robotic finger system with biomimetic artificial joints. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 24-27 June 2012; pp. 568-574. otwiera się w nowej karcie
  101. Controzzi, M.; Cipriani, C.; Jehenne, B.; Donati, M.; Carrozza, M.C. Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August-4 September 2010; pp. 499-502. otwiera się w nowej karcie
  102. Grebenstein, M.; Chalon, M.; Hirzinger, G.; Siegwart, R. Antagonistically driven finger design for the anthropomorphic DLR hand arm system. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6-8 December 2010; pp. 609-616. otwiera się w nowej karcie
  103. Engler, C.D. Design and Development of an Anthropomorphic Electro-Mechanical Hand with Exoskeletal Control for Reproduction of Human Hand Dexterity. Ph.D. Thesis, Lehigh University, Bethlehem, PA, USA, 1988.
  104. Schectman, L.A. Artificial Robotic Hand. U.S. Patent No 5,080,682, 14 January 1992.
  105. Cho, K.J.; Rosemarin, J.; Asada, H. Design of vast DOF artificial muscle actuators with a cellular array structure and its application to a five-fingered robotic hand. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15-19 May 2006; pp. 2214-2219.
  106. Liu, H.; Wu, K.; Meusel, P.; Seitz, N.; Hirzinger, G.; Jin, M.; Liu, Y.; Fan, S.; Lan, T.; Chen, Z. Multisensory five-finger dexterous hand: The DLR/HIT Hand II. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22-26 September 2008; pp. 3692-3697. otwiera się w nowej karcie
  107. Xu, Z.; Kumar, V.; Todorov, E. A low-cost and modular, 20-DOF anthropomorphic robotic hand: Design, actuation and modeling. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Atlanta, GA, USA, 15-17 October 2013; Volume 13, pp. 368-375.
  108. Peregrina, M.A.; Poveda, A.R. Design and development of an open antropomorphic robotic hand development system. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25-27 October 2018; pp. 592-596. otwiera się w nowej karcie
  109. Bundhoo, V.; Park, E.J. Design of an artificial muscle actuated finger towards biomimetic prosthetic hands. In Proceedings of the 12th International Conference on Advanced Robotics, Seattle, WA, USA, 18-20 July 2005; Volume 2005, pp. 368-375. otwiera się w nowej karcie
  110. Çulha, U.; Iida, F. Enhancement of finger motion range with compliant anthropomorphic joint design. Bioinspir. Biomim. 2016, 11. [CrossRef] [PubMed] otwiera się w nowej karcie
  111. Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2016, 35, 161-185. [CrossRef] otwiera się w nowej karcie
  112. Qi, P.; Bai, Y.; Yang, N.; Xu, Z.; Ni, R.; Sun, Y. Anthropomorphic Soft Pneumatic Fingers Towards Full Dexterity of Human Hand. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6-9 November 2018; pp. 381-386.
  113. Tavakoli, M.; De Almeida, A.T. Adaptive under-actuated anthropomorphic hand: ISR-SoftHand. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14-18 September 2014; pp. 1629-1634. otwiera się w nowej karcie
  114. Kontoudis, G.P.; Liarokapis, M.V.; Zisimatos, A.G.; Mavrogiannis, C.I.; Kyriakopoulos, K.J. Open-source, anthropomorphic, underactuated robot hands with a selectively lockable differential mechanism: Towards affordable prostheses. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September-2 October 2015; Volume 40, pp. 5857-5862. otwiera się w nowej karcie
  115. Lotti, F.; Tiezzi, P.; Vassura, G.; Biagiotti, L.; Palli, G.; Melchiorri, C. Development of UB Hand 3: Early results. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005; pp. 4488-4493. otwiera się w nowej karcie
  116. LI, G.; LIU, H.; ZHANG, W. Development of Multi-Fingered Robotic Hand With Coupled and Directly Self-Adaptive Grasp. Int. J. Hum. Robot. 2012, 9. [CrossRef] otwiera się w nowej karcie
  117. Lee, Y.K.; Shimoyama, I. A skeletal framework artificial hand actuated by pneumatic artificial muscles. Adv. Robot. 1998, 13, 349-350. [CrossRef] otwiera się w nowej karcie
  118. Yamano, I.; Maeno, T. Five-fingered robot hand using ultrasonic motors and elastic elements. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005; otwiera się w nowej karcie
  119. Nasser, S.; Rincon, D.; Rodriguez, M. Design of an anthropomorphic underactuated hand prosthesis with passive-adaptive grasping capabilities. In Proceedings of the Florida Conf. on Recent Advances in Robotics and Robot Showcase, Miami, FL, USA, 25-26 May 2006.
  120. Saharan, L.; Tadesse, Y. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids. Bioinspir. Biomim. Bioreplication 2016, 9797. [CrossRef] otwiera się w nowej karcie
  121. Nemoto, Y.; Ogawa, K.; Yoshikawa, M. F3Hand: A Five-Fingered Prosthetic Hand Driven with Curved Pneumatic Artificial Muscles. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Honolulu, HI, USA, 18-21 July 2018; pp. 1668-1671. otwiera się w nowej karcie
  122. Kim, K.R.; Jeong, S.H.; Kim, P.; Kim, K.S. Design of Robot Hand With Pneumatic Dual-Mode Actuation Mechanism Powered by Chemical Gas Generation Method. IEEE Robot. Autom. Lett. 2018, 3, 4193-4200. [CrossRef] otwiera się w nowej karcie
  123. Nisal, K.; Ruhunge, I.; Subodha, J.; Perera, C.J.; Lalitharatne, T.D. Design, implementation and performance validation of UOMPro artificial hand: Towards affordable hand prostheses. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Seogwipo, Korea, 11-15 July 2017; pp. 909-912. otwiera się w nowej karcie
  124. Wu, L.; Jung De Andrade, M.; Saharan, L.K.; Rome, R.S.; Baughman, R.H.; Tadesse, Y. Compact and low-cost humanoid hand powered by nylon artificial muscles. Bioinspir. Biomim. 2017, 12. [CrossRef] [PubMed] otwiera się w nowej karcie
  125. Lovchik, C.; Aldridge, H.; Diftler, M. Design of the NASA Robonaut Hand; Technical Report; NASA: Washington, DC, USA, 1999. otwiera się w nowej karcie
  126. Xiong, C.H.; Chen, W.R.; Sun, B.Y.; Liu, M.J.; Yue, S.G.; Chen, W.B. Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions. IEEE Trans. Robot. 2016, 32, 652-671. [CrossRef] otwiera się w nowej karcie
  127. Tsujiuchi, N.; Koizumi, T.; Nishino, S.; Komatsubara, H.; Kudawara, T.; Hirano, M. Development of Pneumatic Robot Hand and Construction of Master-Slave System. J. Syst. Des. Dyn. 2008, 2, 1306-1315. [CrossRef] otwiera się w nowej karcie
  128. Carrozza, M.C.; Cappiello, G.; Micera, S.; Edin, B.B.; Beccai, L.; Cipriani, C. Design of a cybernetic hand for perception and action. Biol. Cybern. 2006, 95, 629-644. [CrossRef] otwiera się w nowej karcie
  129. Mahmoud, R.; Ueno, A.; Tatsumi, S. Dexterous mechanism design for an anthropomorphic artificial hand: Osaka City University Hand I. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6-8 December 2010; pp. 180-185. otwiera się w nowej karcie
  130. Grebenstein, M.; Albu-Schäffer, A.; Bahls, T.; Chalon, M.; Eiberger, O.; Friedl, W.; Gruber, R.; Haddadin, S.; Hagn, U.; Haslinger, R.; et al. The DLR hand arm system. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9-13 May 2011; pp. 3175-3182. otwiera się w nowej karcie
  131. Yi, S.H. Electronic Artificial Hand, US Patent 0303633, filed 28 June 2018, and issued 25 October 2018.
  132. El Kady, A.M.; Mahfouz, A.E.; Taher, M.F. Mechanical design of an anthropomorphic prosthetic hand for shape memory alloy actuation. In Proceedings of the 2010 5th Cairo International Biomedical Engineering Conference, Cairo, Egypt, 16-18 December 2010; pp. 86-89. otwiera się w nowej karcie
  133. Lee, J.H.; Okamoto, S.; Matsubara, S. Development of Multi-Fingered Prosthetic Hand Using Shape Memory Alloy Type Artificial Muscle. Comput. Technol. Appl. 2012, 3, 477-484.
  134. Gaiser, I.; Schulz, S.; Kargov, A.; Klosek, H.; Bierbaum, A.; Pylatiuk, C.; Oberle, R.; Werner, T.; Asfour, T.; Bretthauer, G.; et al. A new anthropomorphic robotic hand. In Proceedings of the 2008 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, 1-3 December 2008; pp. 418-422. otwiera się w nowej karcie
  135. Zhang, Z.; Han, T.; Pan, J.; Wang, Z. CATCH-919 Hand: Design of a 9-actuator 19-DOF Anthropomorphic Robotic Hand. arXiv 2018, arXiv:1809.04290.
  136. Belter, J.T.; Dollar, A.M. Performance characteristics of anthropomorphic prosthetic hands. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June-1 July 2011. otwiera się w nowej karcie
  137. Belter, J.T.; Segil, J.L.; Dollar, A.M.; Weir, R.F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. J. Rehabil. Res. Dev. 2013, 50, 599-618. [CrossRef] [PubMed] otwiera się w nowej karcie
  138. Röthling, F.; Haschke, R.; Steil, J.J.; Ritter, H. Platform portable anthropomorphic grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October-2 November 2007; pp. 2951-2956. otwiera się w nowej karcie
  139. Controzzi, M.; Cipriani, C.; Carrozza, M.C. Design of artificial hands: A review. Springer Tracts Adv. Robot. 2014, 95, 219-246. [CrossRef] otwiera się w nowej karcie
  140. Lai, J.C.; Schoen, M.P.; Perez Gracia, A.; Naidu, D.S.; Leung, S.W. Prosthetic devices: Challenges and implications of robotic implants and biological interfaces. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2007, 221, 173-183. [CrossRef] [PubMed] otwiera się w nowej karcie
  141. Weir, R.F. Design of artificial arms and hands for prosthetic applications. In Standard Handbook of Biomedical Engineering & Design; McGraw-Hill: New York, NY, USA, 2003; pp. 32.1-32.61. otwiera się w nowej karcie
  142. Del Cura, V.O.; Cunha, F.L.; Aguiar, M.L.; Cliquet, A. Study of the different types of actuators and mechanisms for upper limb prostheses. Artif. Organs 2003, 27, 507-516. [CrossRef] otwiera się w nowej karcie
  143. Redman, T.R. The Design of a Robotic Hand with Multiple Actuators for Children. Ph.D. Thesis, University of Southampton, Southampton, UK, 2016.
  144. Kim, Y.J.; Lee, Y.; Kim, J.; Lee, J.W.; Park, K.M.; Roh, K.S.; Choi, J.Y. RoboRay hand: A highly backdrivable robotic hand with sensorless contact force measurements. In Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May-7 June 2014; pp. 6712-6718. otwiera się w nowej karcie
  145. Thayer, N.; Priya, S. Design and implementation of a dexterous anthropomorphic robotic typing (DART) hand. Smart Mater. Struct. 2011, 20. [CrossRef] otwiera się w nowej karcie
  146. Yang, D.P.; Zhao, J.D.; Gu, Y.K.; Wang, X.Q.; Li, N.; Jiang, L.; Liu, H.; Huang, H.; Zhao, D.W. An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals. J. Bionic Eng. 2009, 6, 255-263. [CrossRef] otwiera się w nowej karcie
  147. Sonoda, T.; Godler, I. Multi-fingered robotic hand employing strings transmission named "twist drive". In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18-22 October 2010; pp. 2733-2738. otwiera się w nowej karcie
  148. Tondu, B. Modelling of the McKibben artificial muscle: A review. J. Intell. Mater. Syst. Struct. 2012, 23, 225-253. [CrossRef] otwiera się w nowej karcie
  149. Miertsch, L.; Bannasch, R.; Schwenk, H.; Schulz, A.; Boblan, I.; Prietzel, F. A Human-Like Robot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction and Functionality. In Embodied Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; pp. 160-179.
  150. Pfeiffer, C.; DeLaurentis, K.; Mavroidis, C. Shape memory alloy actuated robot prostheses: Initial experiments. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10-15 May 1999; Volume 3, pp. 2385-2391. otwiera się w nowej karcie
  151. Lafontaine, S.; Hunter, I.; Wieringa, P.; Vandesteeg, N.; Madden, P.; Takshi, A.; Madden, J.; Anquetil, P.; Pytel, R. Artificial Muscle Technology: Physical Principles and Naval Prospects. IEEE J. Ocean. Eng. 2004, 29, 706-728. [CrossRef] otwiera się w nowej karcie
  152. Mirvakili, S.M.; Hunter, I.W. Artificial Muscles: Mechanisms, Applications, and Challenges. Adv. Mater. 2018, 30. [CrossRef] [PubMed] otwiera się w nowej karcie
  153. Delaurentis, K.J.; Mavroidis, C.; Pfeiffer, C.; Technologies, C.; River, T. Development of a Shape Memory Alloy Actuated Robotic Hand. In Proceedings of the 7th International Conference on New Actuators (ACTUATOR 2000), Bremen, Germany, 19-21 June 2000.
  154. Bundhoo, V.; Haslam, E.; Birch, B.; Park, E.J. A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I: Design and evaluation. Robotica 2009, 27, 131-146. [CrossRef] otwiera się w nowej karcie
  155. Atasoy, A.; Kaya, E.; Toptas, E.; Kuchimov, S.; Kaplanoglu, E.; Ozkan, M. 24 DOF EMG controlled hybrid actuated prosthetic hand. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Orlando, FL, USA, 16-20 August 2016; pp. 5059-5062. otwiera się w nowej karcie
  156. Andrianesis, K.; Tzes, A. Design of an anthropomorphic prosthetic hand driven by shape memory alloy actuators. In Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 19-22 October 2008; pp. 517-522. otwiera się w nowej karcie
  157. Kaplanoglu, E. Design of shape memory alloy-based and tendon-driven actuated fingers towards a hybrid anthropomorphic prosthetic hand. Int. J. Adv. Robot. Syst. 2012. [CrossRef] otwiera się w nowej karcie
  158. He, Z.H.; Bottinelli, R.; Pellegrino, M.A.; Ferenczi, M.A.; Reggiani, C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys. J. 2000, 79, 945-961. [CrossRef] otwiera się w nowej karcie
  159. Hunter, I.; Lafontaine, S. A comparison of muscle with artificial actuators. In Proceedings of the Technical Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 22-25 June 1992; pp. 178-185. otwiera się w nowej karcie
  160. Barclay, C.J. Energy demand and supply in human skeletal muscle. J. Muscle Res. Cell Motil. 2017, 38, 143-155. [CrossRef] [PubMed] otwiera się w nowej karcie
  161. Muscle Isometric Contraction-An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect. com/topics/medicine-and-dentistry/muscle-isometric-contraction (accessed on 24 May 2019). otwiera się w nowej karcie
  162. Properties of SMA Material from SmartWires company. Available online: https://smartwires.eu/index. php?controller=cms&id_cms_category=2 (accessed on 30 September 2019). otwiera się w nowej karcie
  163. Properties of SMA Material from Dynalloy company. Available online: http://www.dynalloy.com/tech_ data_wire.php (accessed on 30 September 2019). otwiera się w nowej karcie
  164. Sheng, J.; Chen, H.; Qiang, J.; Li, B.; Wang, Y. Thermal, Mechanical, and Dielectric Properties of a Dielectric Elastomer for Actuator Applications. J. Macromol. Sci. Part B 2012, 51, 2093-2104. [CrossRef] otwiera się w nowej karcie
  165. La, T.G.; Lau, G.K. Enhanced dielectric strength and actuation of acrylic elastomer with silicone gel encapsulation. In Electroactive Polymer Actuators and Devices (EAPAD) 2016; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. otwiera się w nowej karcie
  166. Major, A.; Project, Q.; Hunt, W. Polymer Artificial Muscles Controls and Applications with Low-Cost Twist Insertion Fiber Actuators; Technical report; Worcester Polytechnic Institute: Worcester, MA, USA, 2015.
  167. Saharan, L.; De Andrade, M.J.; Saleem, W.; Baughman, R.H.; Tadesse, Y. IGrab: Hand orthosis powered by twisted and coiled polymer muscles. Smart Mater. Struct. 2017, 26. [CrossRef] otwiera się w nowej karcie
  168. Haines, C.; Baughman, R.H.; Lima, M.D.; Rome, R.S.; Wu, L.; Jung de Andrade, M.; Tadesse, Y. Nylon-muscle-actuated robotic finger. In Active and Passive Smart Structures and Integrated Systems 2015; International Society for Optics and Photonics: Bellingham, WA, USA, 2015.
  169. Kim, D.; Choi, H.R.; Koo, J.C.; Nam, J.d.; Park, J.K.; Chuc, N.H.; Lee, Y.; Vuong, N.H.L. Multi-jointed robot finger driven by artificial muscle actuator. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12-17 May 2009; pp. 587-592.
  170. Tadesse, Y.; Grange, R.W.; Priya, S. Synthesis and cyclic force characterization of helical polypyrrole actuators for artificial facial muscles. Smart Mater. Struct. 2009, 18. [CrossRef] otwiera się w nowej karcie
  171. Xiang, C.; Guo, J.; Chen, Y.; Hao, L.; Davis, S. Development of a SMA-Fishing-Line-McKibben Bending Actuator. IEEE Access 2018, 6, 27183-27189. [CrossRef] otwiera się w nowej karcie
  172. Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 2017, 29, 1603483. [CrossRef] otwiera się w nowej karcie
  173. Miriyev, A.; Stack, K.; Lipson, H. Soft material for soft actuators. Nat. Commun. 2017, 8, 596. [CrossRef] [PubMed] otwiera się w nowej karcie
  174. Crowder, R. Local actuation of multijointed robotic fingers. In Proceedings of the International Conference on Control '91, Edinburgh, UK, 25-28 March 1991; pp. 48-52.
  175. Bridgwater, L.B.; Ihrke, C.A.; Diftler, M.A.; Abdallah, M.E.; Radford, N.A.; Rogers, J.M.; Yayathi, S.; Askew, R.S.; Linn, D.M. The robonaut 2 hand-Designed to do work with tools. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14-18 May 2012; pp. 3425-3430. otwiera się w nowej karcie
  176. Wilkinson, D.; Weghe, M.; Matsuoka, Y. An extensor mechanism for an anatomical robotic hand. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14-19 September 2003; Volume 1, pp. 238-243. otwiera się w nowej karcie
  177. Xu, Z.; Todorov, E. Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16-21 May 2016; pp. 3485-3492.
  178. Bicchi, A.; Kumar, V. Robotic grasping and contact: A review. Proc. IEEE Int. Conf. Robot. Autom. 2000, 1, 348-353. [CrossRef] otwiera się w nowej karcie
  179. Chen, C.H.; Naidu, D.S.; Perez-Gracia, A.; Schoen, M.P. A hybrid adaptive control strategy for a smart prosthetic hand. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, Minneapolis, MN, USA, 3-6 September 2009; pp. 5056-5059.
  180. Borst, C.; Fischer, M.; Hirzinger, G. Calculating hand configurations for precision and pinch grasps. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland, 30 September-4 October 2002; Volume 2, pp. 1553-1559. otwiera się w nowej karcie
  181. Ben Amor, H.; Kroemer, O.; Hillenbrand, U.; Neumann, G.; Peters, J. Generalization of human grasping for multi-fingered robot hands. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7-12 October 2012; pp. 2043-2050. otwiera się w nowej karcie
  182. Laliberté, T.; Gosselin, C.M. Simulation and design of underactuated mechanical hands. Mech. Mach. Theory 1998, 33, 39-57. [CrossRef] otwiera się w nowej karcie
  183. Gosselin, C.; Laliberté, T.; Birglen, L.; Gosselin, C.M. Underactuation in robotic grasping hands. Mach. Intell. Robot. Control 2002, 4, 1-11
  184. Morecki, A.; Busko, Z.; Gasztold, H.; Jaworek, K. Synthesis and control of the anthropomorphic two-handed manipulator. In Proceedings of the 10th International Symposium on Industrial Robots, Milan, Italy, 5-7 March 1980. otwiera się w nowej karcie
  185. Jeong, S.H.; Lee, H.J.; Kim, K.R.; Kim, K.S. Design of a miniature force sensor based on photointerrupter for robotic hand. Sens. Actuators A Phys. 2018, 269, 444-453. [CrossRef] otwiera się w nowej karcie
  186. Saudabayev, A.; Varol, H.A. Sensors for robotic hands: A survey of state of the art. IEEE Access 2015, 3, 1765-1782. [CrossRef] c 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 179 razy

Publikacje, które mogą cię zainteresować

Meta Tagi