Automatic Clustering of EEG-Based Data Associated with Brain Activity - Publikacja - MOST Wiedzy

Wyszukiwarka

Automatic Clustering of EEG-Based Data Associated with Brain Activity

Abstrakt

The aim of this paper is to present a system for automatic assigning electroencephalographic (EEG) signals to appropriate classes associated with brain activity. The EEG signals are acquired from a headset consisting of 14 electrodes placed on skull. Data gathered are first processed by the Independent Component Analysis algorithm to obtain estimates of signals generated by primary sources reflecting the activity of the brain. Next, the parameterization process is performed in two ways, i.e. by applying Discrete Wavelet Transform and utilizing an autoencoder network. The resulting sets of parameters are then used for the data clustering and the effectiveness of correct assignment of data into adequate clusters is checked. It occurs that the performance of wavelets- and autoencoders-based parametrization is similar, however in several cases, autoencoders allowed for obtaining a higher mean distance and lower standard deviation than distances provided by the wavelet-based method. Moreover, a supervised classification of signals is performed as a form of benchmarking.

Cytowania

0
CrossRef
0
Web of Science
0
Scopus

Adam Kurowski, Katarzyna Elżbieta Mrozik, Bożena Kostek, Andrzej Czyżewski. (2019). Automatic Clustering of EEG-Based Data Associated with Brain Activity, 11124, 470-479. https://doi.org/10.1007/978-3-319-98678-4_47

Informacje szczegółowe

Kategoria:
Inna publikacyjna praca zbiorowa (w tym materiały konferencyjne)
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
Multimedia and Network Information Systems strony 470 - 479
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kurowski A., Mrozik K., Kostek B., Czyżewski A.: Automatic Clustering of EEG-Based Data Associated with Brain Activity// Multimedia and Network Information Systems/ ed. Choroś, K., Kopel, M., Kukla, E., Siemiński, A. : Springer, 2019, s.470-479

wyświetlono 112 razy

Publikacje, które mogą cię zainteresować

Meta Tagi