Building Dedicated Project Management Process Basing on Historical Experience - Publikacja - MOST Wiedzy

Wyszukiwarka

Building Dedicated Project Management Process Basing on Historical Experience

Abstrakt

Project Management Process used to manage IT project could be a key aspect of project success. Existing knowledge does not provide a method, which enables IT Organizations to choose Project Management methodology and processes, which would be adjusted to their unique needs. As a result, IT Organization use processes which are not tailored to their specific and do not meet their basic needs. This paper is an attempt to fill this gap. It describes a method for selecting management methodologies, processes and engineering practices most adequate to project characteristic. Choices are made on the basis of organization’s historical experience. Bespoken Project Management process covers technical and non-technical aspects of software development and is adjusted to unique project challenges and needs. Created process is a hybrid based on CMMI for Development Model, it derives from different sources, uses elements of waterfall and Agile approaches, different engineering practices and process improvement methods.

Cytowania

  • 0

    CrossRef

  • 1

    Web of Science

  • 0

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 14 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (Springer International Publishing AG 2017)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja monograficzna
Typ:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Tytuł wydania:
Intelligent Information and Database Systems strony 798 - 810
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Kurzawski M., Orłowski C., Ziółkowski A., Deręgowski T.: Building Dedicated Project Management Process Basing on Historical Experience// / ed. Bogdan Trawinski : Springer, 2017, s.798-810
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-319-54430-4_76
Bibliografia: test
  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and system approaches. AI Commun. 17(1), 39-59 (1994) otwiera się w nowej karcie
  2. Arikan, A.: Multichannel Marketing: Metrics and Methods for On and Offline Success. Sybex, Indianapolis (2008)
  3. Beck, K.A.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley, Boston (2004)
  4. Bisht, S.: Robot Framework Test Automation. Packt Publishing, Birmingham (2013)
  5. Chess, B.: Secure Programming with Static Analysis. Addison-Wesley Professional, Boston (2007)
  6. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for Development: Guidelines for Process Integration and Product Improvement. Addison-Wesley Professional, Boston (2011)
  7. Deręgowski Tomasz, O.C.: Building Project and Project Team Characteristic for creating Hybrid Management Process. KKIO, Wrocław (2016)
  8. Deręgowski Tomasz, O.C.: Model for building project management processes as a way of increasing organization readiness for Agile transformation. Konferencja Innowacje w Zarządzaniu i Inżynierii Produkcj, Tom II (2016)
  9. Duvall, P.M.: Continuous Integration. Improving Software Quality and Reducing Risk. Pearson Education, Upper Saddle River (2007)
  10. Humble, J.F.: Continuous Delivery. Reliable Software Releases through Build, Test, and Deployment Automation. Pearson Education, Upper Saddle River (2010)
  11. Kelleher, J.D., Namee, B.M., D'Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. The MIT Press, Cambridge (2015)
  12. Kim, G.: The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations. IT Revolution Press, Singapore (2016) otwiera się w nowej karcie
  13. Marz, N.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications, Greenwich (2015) otwiera się w nowej karcie
  14. Witten, I.H.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2011) otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 54 razy

Publikacje, które mogą cię zainteresować

Meta Tagi