Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass - Publikacja - MOST Wiedzy

Wyszukiwarka

Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass

Abstrakt

In this work, liquefied biomass from the Baltic Sea was used for the preparation of rigid polyurethane (PUR) foams. The biomass contained 10 wt% of Enteromorpha macroalgae and 90 wt% of Zostera marina seagrass characterized by a high content of cellulose. The influence of time, temperature and the type of solvent on the efficiency of the liquefaction process and properties of biopolyols was determined. Obtained materials were analyzed in terms of chemical structure, rheological properties, thermal stability and basic physical and mechanical properties. It was found that optimal parameters for liquefaction of used biomass were: temperature of 150 °C, reaction time of 6 h and a solvent mixture containing glycerol and poly(ethylene glycol) in ratio of 50:50 (biopolyol 50G50P_150). Under these conditions, 78 wt% of biomass was liquefied and resulting biopolyol was characterized by a hydroxyl number of 650 mg KOH/g. Depending on the used solvent mixture and the liquefaction temperature, biopolyols showed the character of Newtonian or non-Newtonian liquids. Rigid PUR foams were obtained by substitution of petrochemical polyol with 10, 20 and 30 wt% of biopolyol. It was found that the addition of biopolyol to foams’ formulations did not cause significant changes in their chemical structure, while mechanical strength and thermal stability were enhanced. The presented study confirms that biomass from the Baltic Sea can be used for the synthesis of biopolyols and rigid polyurethane foams.

Cytowania

  • 4

    CrossRef

  • 4

    Web of Science

  • 4

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
CELLULOSE nr 26, strony 5893 - 5912,
ISSN: 0969-0239
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kosmela P., Gosz K., Kazimierski P., Hejna A., Haponiuk J., Piszczyk Ł.: Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass// CELLULOSE. -Vol. 26, (2019), s.5893-5912
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s10570-019-02540-8
Bibliografia: test
  1. Bergel BF, Dias Osorio S, da Luz LM, Santana RMC (2018) Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydr Polym 200:106-114. https://doi.org/10.1016/j.eurpolymj.2018. 08.001 otwiera się w nowej karcie
  2. Bi H, Ren Z, Guo R, Xu M, Song Y (2018) Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Ind Crop Prod 122:76-84. https://doi.org/10.1016/j.indcrop.2018.05.059 otwiera się w nowej karcie
  3. Briand X, Cluzet S, Dumas B, Esquerre-Tugaye MT, Salamagne S (2005) Use of ulvans as elicitors of mechanisms for nitrogen absorption and protein synthesis. WO2005094581A1
  4. Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Macquarrie DJ (2010) Microwave assisted decomposition of cellulose: a new thermochemical route for biomass exploitation. Bioresour Technol 101:3776-3779. https://doi.org/10. 1016/j.biortech.2009.12.110 otwiera się w nowej karcie
  5. Cabello-Pasini A, Muñiz-Salazar R, Ward DH (2004) Bio- chemical characterization of the seagrass Zostera marina at its southern distribution limit in the North Pacific. Cienc Mar 30:21-34. https://doi.org/10.7773/cm.v30i11.123 otwiera się w nowej karcie
  6. Chen HB, Shen P, Chen MJ, Zhao HB, Schiraldi DA (2016) Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl Mater Interfaces 8(47):32557-32564. https://doi.org/10.1021/acsami. 6b11659 otwiera się w nowej karcie
  7. Chhabra RP (2010) Non-Newtonian fluids: an introduction. In: Deshpande AP, Krishnan JM, Kumar S (eds) Rheology of complex fluids. Springer, Berlin, pp 3-34 otwiera się w nowej karcie
  8. Davies P, Morvan C, Sire O, Baley C (2007) Structure and properties of fibers from sea-grass (Zostera marina). otwiera się w nowej karcie
  9. J Mater Sci 13(42):4850-4857. https://doi.org/10.1007/ s10853-006-0546-1 otwiera się w nowej karcie
  10. Deng S, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167-2177. https://doi.org/10.1016/j.watres.2005. 03.033 otwiera się w nowej karcie
  11. Deshpande AP, Krishnan JM, Kumar S (2010) Reology of complex fluids. Springer, New York Dhaliwala GS, Anandana S, Chandrashekharaa K, Leesb J, Namb P (2018) Development and characterization of polyurethane foams with substitution of polyether polyol with soy-based polyol. Eur Polym J 107:105-117. https:// doi.org/10.1016/j.eurpolymj.2018.08.001 otwiera się w nowej karcie
  12. Dziubiński M, Kiljanski T, Sęk J (2009) Podstawy reologii i reometrii płynów. Lodz Unversity of Technology Pub- lisher, Lodz otwiera się w nowej karcie
  13. Fournier D, Du Prez F (2008) ''Click'' chemistry as a promising tool for side-chain functionalization of polyurethanes. Macromolecules 41:4622-4630. https://doi.org/10.1021/ ma800189z otwiera się w nowej karcie
  14. Głowińska E, Datta J (2014) A mathematical model of rheo- logical behavior of novel bio-based isocyanate-terminated polyurethane prepolymers. Ind Crop Prod 60:123-129. https://doi.org/10.1016/j.indcrop.2014.06.016 otwiera się w nowej karcie
  15. Gosz K, Kosmela P, Hejna A, Gajowiec G, Piszczyk Ł (2018) Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties. Wood Sci Technol 52:599-617. https://doi.org/ 10.1007/s00226-018-0991-4 otwiera się w nowej karcie
  16. Grilc M, Likozar B, Levec J (2015) Biofuel from lignocellulosic biomass liquefaction in waste glycerol and its catalytic upgrade. In: Dell G, Egger CH (eds) World sustainable energy days next 2014. Springer, Wiesbaden, pp 137-144 otwiera się w nowej karcie
  17. Guo H, Gao Q, Ouyang C, Zheng K, Xu W (2015) Research on properties of rigid polyurethane foam with heteroaromatic and brominated benzyl polyols. J Appl Polym Sci 132:1-8. https://doi.org/10.1002/app.42349 otwiera się w nowej karcie
  18. Guo R, Ren Z, Bi H, Song Y, Xu M (2018) Effect of toughening agents on the properties of poplar wood flour/poly(lactic acid) composites fabricated with fused deposition model- ing. Euro Polym J 107:34-45. https://doi.org/10.1016/j. eurpolymj.2018.07.035 otwiera się w nowej karcie
  19. Halal SLME, Colussi R, Deon VG, Pinto VZ, Villanova FA, Carreno NLV, Dias ARG, Zavareze ER (2015) Films based on oxidized starch and cellulose from barley. Carbohydr Polym 133:644-653. https://doi.org/10.1016/j.carbpol. 2015.07.024 otwiera się w nowej karcie
  20. Hejna A, Kosmela P, Klein M, Formela K, Kopczyńska M, Haponiuk JT, Piszczyk Ł (2018a) Two-step conversion of crude glycerol generated by biodiesel production into biopolyols: synthesis, structural and physical chemical characterization. J Polym Environ. https://doi.org/10.1007/ s10924-018-1217-4 otwiera się w nowej karcie
  21. Hejna A, Kosmela P, Klein M, Gosz K, Formela K, Haponiuk J, Piszczyk Ł (2018b) Rheological properties, oxidative and thermal stability, and potential application of biopolyols prepared via two-step process from crude glycerol. Polym Degrad Stab 152:29-42. https://doi.org/10.1016/j. polymdegradstab.2018.03.022 otwiera się w nowej karcie
  22. Hemamalini T, Dev VRG (2018) Comprehensive review on electrospinning of starch polymer for biomedical applica- tions. Int J Biol Macromol 106:712-718. https://doi.org/10. 1016/j.ijbiomac.2017.08.079 otwiera się w nowej karcie
  23. Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227-233. https://doi.org/10.1016/j.biortech.2011.09. 125 otwiera się w nowej karcie
  24. Javni I, Zhang W, Petrović ZS (2004) Soybean-oil-based polyisocyanurate rigid foams. J Polym Environ 12:123-129. https://doi.org/10.1023/B:JOOE. otwiera się w nowej karcie
  25. Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab 98:2687-2696. https://doi.org/10.1016/j.polymdegradstab. 2013.09.032 otwiera się w nowej karcie
  26. Jo J, Ly HV, Kim J, Kim SS, Lee EY (2015) Preparation of biopolyol by liquefaction of palm kernel cake using PEG#400 blended glycerol. J Ind Eng Chem 29:304-313. https://doi.org/10.1016/j.jiec.2015.04.010 otwiera się w nowej karcie
  27. Karimia MB, Khanbabaeib G, Sadeghi GMM (2017) Vegetable oil-based polyurethane membrane for gas sep- aration. J Membr Sci 527:198-206. https://doi.org/10. 1016/j.memsci.2016.12.008 otwiera się w nowej karcie
  28. Kim KH, Jo YJ, Lee CG, Lee E (2015) Solvothermal liquefac- tion of microalgal Tetraselmis sp. biomass to prepare biopolyols by using PEG#400-blended glycerol. Algal Res 12:539-544. https://doi.org/10.1016/j.algal.2015.08.007 otwiera się w nowej karcie
  29. Kosmela P, Hejna A, Formela K, Haponiuk JT, Piszczyk Ł (2017a) The study on application of biopolyols obtained by cellulose biomass liquefaction performed with crude glycerol for the synthesis of rigid polyurethane foams. J Polym Environ 26:2546-2554. https://doi.org/10.1007/ s10924-017-1145-8 otwiera się w nowej karcie
  30. Kosmela P, Kazimierski P, Formela K, Haponiuk JT, Piszczyk Ł (2017b) Liquefaction of macroalgae enteromorpha bio- mass for the preparation of biopolyols by using crude glycerol. J Ind Eng Chem 56:399-406. https://doi.org/10. 1016/j.jiec.2017.07.037 otwiera się w nowej karcie
  31. Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics? Int J Eng Res Innov 3:59-64 otwiera się w nowej karcie
  32. Li C, Luo X, Li T, Tong X, Li Y (2014) Polyurethane foams based on crude glycerol-derived biopolyols: one-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties. Polymer 55:6529-6538. https://doi.org/10.1016/j.polymer. 2014.10.043 otwiera się w nowej karcie
  33. Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch- based films. Ind Crop Prod 109:619-626. https://doi.org/ 10.1016/j.indcrop.2017.09.020 otwiera się w nowej karcie
  34. Mayfield S (2015) Consortium for algal biofuel commercial- ization (CAB-COMM). University of California, San Diego Modesti M, Lorenzetti A (2001) An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams. Eur Polym J 37(5):949-954. https://doi.org/10.1016/S0014- 3057(00)00209-3 otwiera się w nowej karcie
  35. Modesti M, Lorenzetti A (2003) Improvement on fire behaviour of water blown PIR-PUR foams: use of anhalogen-free flame retardant. Eur Polym J 39:263-268. https://doi.org/ 10.1016/S0014-3057(02)00198-2 otwiera się w nowej karcie
  36. Nouraddini M, Esmaiili M, Mohtarami F (2018) Development and characterization of edible films based on eggplant flour and corn starch. Int J Biol Macromol 120:1639-1645. https://doi.org/10.1016/j.ijbiomac.2018.09.126 otwiera się w nowej karcie
  37. Oh ST, Kim WR, Kim SH, Chung YC, Park JS (2011) The preparation of polyurethane foam combined with pH-sen- sitive alginate/bentonite hydrogel. Fibers Polym 12(2):159-165. https://doi.org/10.1007/s12221-011-0159- 4 otwiera się w nowej karcie
  38. Pathak S, Sneha CLR, Mathew BB (2014) Bioplastics: its timeline based scenario & challenges. J Polym Biopolym Phys Chem 2:84-90
  39. Pawar MS, Kadam AS, Dawane BS, Yemul OS (2016) Syn- thesis and characterization of rigid polyurethanefoams from algae oil using biobased chain extenders. Polym Bull 73:727-741. https://doi.org/10.1007/s00289-015-1514-1 otwiera się w nowej karcie
  40. Piszczyk Ł, Kosmela P, Hejna A, Haponiuk JT (2017) Sposób wytwarzania przyjaznych środowisku nowych hydroksypochodnych, P.420608
  41. Pretsch T, Jakob I, Müller W (2009) Hydrolytic degradation and functional stability of a segmented shape memory poly(e- ster urethane). Polym Degrad Stab 94:61-73. https://doi. org/10.1016/j.polymdegradstab.2008.10.012 otwiera się w nowej karcie
  42. Ruddick C, Fishman BD (2015) World's first algae surfboard makes waves in San Diego. University of California, San Diego Samborska-Skowron R, Balas A (2003) Jakościowa identy- fikacja pierścieni izocyjanurowych w elastomerach uretanowo-izocyjanurowych i w ich hydrolizatach. Polimery 48:371-374
  43. Sormana JL, Meredith JC (2004) High-throughput discovery of structure-mechanical property relationships for seg- mented poly(urethane-urea)s. Macromolecules 37:2186-2195. https://doi.org/10.1021/ma035385v otwiera się w nowej karcie
  44. Stevens ES (2003) What makes green plastic green? Biocycle 44:24-27
  45. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-a review. Biotechnol Adv 25:148-175. https://doi.org/10. 1016/j.biotechadv.2006.11.007 otwiera się w nowej karcie
  46. Ubeyitogullari A, Ciftci ON (2016) Formation of nanoporous aerogels from wheat starch. Carbohydr Polym 147:125-132. https://doi.org/10.1016/j.carbpol.2016.03. 086 otwiera się w nowej karcie
  47. Wang Y, Wu J, Wan Y, Lei H, Yu F, Chen P, Lin X, Liu Y, Ruan R (2009) Liquefaction of corn stover using industrial bio- diesel glycerol. Int J Agric Biol Eng 2(2):32-40. https:// doi.org/10.3965/j.issn.1934-6344.2009.02.032-040 otwiera się w nowej karcie
  48. Yamada T, Hu YH, Ono H (2001) Condensation reaction of degraded lignocellulose during wood liquefaction in the presence of polyhydric alcohols. Nippon Setchaku Gak- kaishi 37:471-478. https://doi.org/10.11618/adhesioj.37. 471 otwiera się w nowej karcie
  49. Yao Y, Yoshioka M, Shiraishi N (1995) Rigid polyurenthane foams from liquefaction mixture of wood and starch. Mokuzai Gakkaishi 41:659-668
  50. Yun JK, Yoo HJ, Kim HD (2007) Preparation and properties of waterborne polyurethane-urea/sodium alginate blends for high water vapor permeable coating materials. J Appl Polym Sci 105(3):1168-1176. https://doi.org/10.1002/app. 25731 otwiera się w nowej karcie
  51. Yuvarani I, Senthilkumar S, Venkatesan J, Kim SK, Al-Kheraif AA, Anil S, Sudha PN (2015) Chitosan modified alginate- polyurethane scaffold for skeletal muscle tissue engineer- ing. J Biomater Tissue Eng 5(8):665-672. https://doi.org/ 10.1166/jbt.2015.1358 otwiera się w nowej karcie
  52. Zimmermann MVG, Turella TC, Santana RMC, Zattera AJ (2014) The influence of wood flour particle size and con- tent on the rheological, physical, mechanical and mor- phological properties of EVA/wood cellular composites. Mater Des 57:660-666. https://doi.org/10.1016/j.matdes. 2014.01.010 otwiera się w nowej karcie
  53. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 58 razy

Publikacje, które mogą cię zainteresować

Meta Tagi