Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model - Publikacja - MOST Wiedzy

Wyszukiwarka

Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model

Abstrakt

This work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches to the point cloud classification using neural networks are discussed. At the same time, their shortcomings are indicated. A developed model based on the PointNet architecture is presented and the way of preparing data for classification is shown. The model is tested on a cloud coming from the 3D Semantic Labeling competition, achieving a good result, confirmed by the high quality of the system, i.e. a high rate of categorization of objects.

Cytowania

  • 5

    CrossRef

  • 6

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 415 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd.)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IFAC-PapersOnLine nr 52, strony 416 - 421,
ISSN: 2405-8963
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kowalczuk Z., Szymański K.: Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model// IFAC-PapersOnLine -Vol. 52,iss. 8 (2019), s.416-421
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ifacol.2019.08.099
Bibliografia: test
  1. dos Santos, C. and Gatti, M. (2014). Deep convolu- tional neural networks for sentiment analysis of short texts. In Proceedings of COLING 2014, the 25th In- ternational Conference on Computational Linguistics: Technical Papers, 69-78.
  2. Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H., and Posner, I. (2016). Vote3deep: Fast object detec- tion in 3d point clouds using efficient convolutional neural networks. CoRR, abs/1609.06666. URL http://arxiv.org/abs/1609.06666. otwiera się w nowej karcie
  3. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778. otwiera się w nowej karcie
  4. Hu, X. and Yuan, Y. (2016). Deep-learning-based clas- sification for DTM extraction from ALS point cloud. Remote Sensing. doi:10.3390/rs8090730. otwiera się w nowej karcie
  5. Jing Huang and Suya You (2016). Point cloud label- ing using 3D Convolutional Neural Network. In 2016 23rd International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR.2016.7900038. otwiera się w nowej karcie
  6. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, 1097-1105. otwiera się w nowej karcie
  7. Li, B. (2016). 3d fully convolutional network for vehicle detection in point cloud. CoRR, abs/1611.08069. URL http://arxiv.org/abs/1611.08069. otwiera się w nowej karcie
  8. Nancy Chinchor, P. (1992). otwiera się w nowej karcie
  9. Muc-4 evaluation met- rics. In FOURTH MESSAGE UNDERSTANDING CONFERENCE (MUC-4), Proceedings of a Conference Held in McLean, Virginia, June 16-18, 1992. URL http://aclweb.org/anthology/M92-1002. otwiera się w nowej karcie
  10. Niemeyer, J., Rottensteiner, F., and Soergel, U. (2014). Contextual classification of lidar data and building ob- ject detection in urban areas. ISPRS journal of pho- togrammetry and remote sensing, 87, 152-165. otwiera się w nowej karcie
  11. Piczak, K.J. (2015). Environmental sound classification with convolutional neural networks. In Machine Learn- ing for Signal Processing (MLSP), 2015 IEEE 25th In- ternational Workshop on, 1-6. IEEE. otwiera się w nowej karcie
  12. Qi, C.R., Su, H., Mo, K., and Guibas, L.J. (2016). Pointnet: Deep learning on point sets for 3d classifica- tion and segmentation. CoRR, abs/1612.00593. URL http://arxiv.org/abs/1612.00593.
  13. Qi, C.R., Yi, L., Su, H., and Guibas, L.J. (2017). Point- net++: Deep hierarchical feature learning on point sets in a metric space. CoRR, abs/1706.02413. URL http://arxiv.org/abs/1706.02413. otwiera się w nowej karcie
  14. Ramiya, A.M., Nidamanuri, R.R., and Krishnan, R. (2016). otwiera się w nowej karcie
  15. Object-oriented semantic labelling of spectral-spatial lidar point cloud for ur- ban land cover classification and buildings detection. Geocarto International, 31(2), 121- 139. doi:10.1080/10106049.2015.1034195. URL https://doi.org/10.1080/10106049.2015.1034195. otwiera się w nowej karcie
  16. Salamon, J. and Bello, J.P. (2017). Deep convolutional neural networks and data augmentation for environmen- tal sound classification. IEEE Signal Processing Letters, 24(3), 279-283. otwiera się w nowej karcie
  17. Schmidhuber, J. (2014). Deep learning in neural net- works: An overview. CoRR, abs/1404.7828. URL http://arxiv.org/abs/1404.7828. otwiera się w nowej karcie
  18. Song, S. and Xiao, J. (2014). Sliding shapes for 3D object detection in depth images. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). doi: 10.1007/978-3-319-10599-4-41. otwiera się w nowej karcie
  19. Song, S. and Xiao, J. (2016). Deep sliding shapes for amodal 3d object detection in rgb-d images. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 808-816. otwiera się w nowej karcie
  20. Yang, Z., Jiang, W., Xu, B., Zhu, Q., Jiang, S., and Huang, W. (2017). A convolutional neural network-based 3D semantic labeling method for ALS point clouds. Remote Sensing. doi:10.3390/rs9090936. otwiera się w nowej karcie
  21. Zeng Wang, D. and Posner, I. (2015). Voting for Voting in Online Point Cloud Object Detection. In Robotics: Science and Systems XI. doi:10.15607/RSS.2015.XI.035. otwiera się w nowej karcie
  22. Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for text classification. In Ad- vances in neural information processing systems, 649- 657. otwiera się w nowej karcie
  23. Zhao, R., Pang, M., and Wang, J. (2018a). Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network. Inter- national Journal of Geographical Information Science. doi:10.1080/13658816.2018.1431840. otwiera się w nowej karcie
  24. Zhao, R., Pang, M., and Wang, J. (2018b). Classifying airborne lidar point clouds via deep features learned by a multi-scale convolutional neural network. International Journal of Geographical Information Science, 32(5), 960-979. doi:10.1080/13658816.2018.1431840. URL https://doi.org/10.1080/13658816.2018.1431840. otwiera się w nowej karcie
  25. Zhou, Y. and Tuzel, O. (2017). Voxelnet: End- to-end learning for point cloud based 3d ob- ject detection. CoRR, abs/1711.06396. URL http://arxiv.org/abs/1711.06396. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 100 razy

Publikacje, które mogą cię zainteresować

Meta Tagi