Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation - Publikacja - MOST Wiedzy

Wyszukiwarka

Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation

Abstrakt

In the present study, ultrasound (US) was coupled with an electrochemical process (ECP) consisting of a novel cathode of carbon cloth (CC)-carbon black (CB) as the nano-composite air-dispersion cathode (NADC) for the degradation of paracetamol (APAP) in an aquatic medium. The NADC favored in situ production of H2O2 by the cathodic reduction. The implementation of iron sacrificial anode instead of dimensionally stable anodes resulted in the generation of Fe2+Fe3+2O4 nanostructures in the solution. The Fe2+Fe3+2O4 nanostructures were activated by means of both US and H2O2 to produce more OH in the aqueous solution. In addition, the utilization of US caused the conversion of H2O2 to OH irrespective of free oxidizing radicals generated through cavitation phenomenon. The hybrid method based on coupling US and NADC-ECP in the presence of Fe2+Fe3+2O4 nanostructures proved synergism (39.8%) allowing to effective decomposition of APAP. The pulse mode of US enhanced the degradation efficiency of APAP as compared to the sweep and normal modes. The intermediates of the degradation route were identified using GC–MS analysis as well as mineralization efficiency. The toxicity assay was also performed based on the inhibition test using activated sludge of a biological wastewater treatment plant.

Cytowania

  • 5 0

    CrossRef

  • 4 8

    Web of Science

  • 4 8

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 2 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF MOLECULAR LIQUIDS nr 284, strony 536 - 546,
ISSN: 0167-7322
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Mirzaee R., Darvishi R., Khataee A., Boczkaj G.: Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation// JOURNAL OF MOLECULAR LIQUIDS. -Vol. 284, (2019), s.536-546
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.molliq.2019.04.033
Bibliografia: test
  1. A. Ziylan-Yavaş, N.H. Ince, Enhanced photo-degradation of paracetamol on n-platinum- loaded TiO 2 : The effect of ultrasound and OH/hole scavengers, Chemosphere, 162 (2016) 324- 332. otwiera się w nowej karcie
  2. R. Darvishi Cheshmeh Soltani, M. Mashayekhi, Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound, Chemosphere, 194 (2018) 471-480.
  3. Y. He, Y. Dong, W. Huang, X. Tang, H. Liu, H. Lin, H. Li, Investigation of boron-doped diamond on porous Ti for electrochemical oxidation of acetaminophen pharmaceutical drug, Journal of Electroanalytical Chemistry, 759 (2015) 167-173. otwiera się w nowej karcie
  4. E. Villaroel, J. Silva-Agredo, C. Petrier, G. Taborda, R.A. Torres-Palma, Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix, Ultrasonics sonochemistry, 21 (2014) 1763-1769. otwiera się w nowej karcie
  5. J.-K. Im, J. Yoon, N. Her, J. Han, K.-D. Zoh, Y. Yoon, Sonocatalytic-TiO 2 nanotube, Fenton, and CCl 4 reactions for enhanced oxidation, and their applications to acetaminophen and naproxen degradation, Separation and Purification Technology, 141 (2015) 1-9. otwiera się w nowej karcie
  6. C.-C. Su, C.A. Cada, M.L.P. Dalida, M.-C. Lu, Effect of UV light on acetaminophen degradation in the electro-Fenton process, Separation and Purification Technology, 120 (2013) 43-51. otwiera się w nowej karcie
  7. L. Yang, L.E. Yu, M.B. Ray, Photocatalytic Oxidation of Paracetamol: Dominant Reactants, Intermediates, and Reaction Mechanisms, Environmental Science & Technology, 43 (2009) 460- 465. otwiera się w nowej karcie
  8. E. Brillas, M.Á. Baños, M. Skoumal, P.L. Cabot, J.A. Garrido, R.M. Rodríguez, Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro- Fenton using platinum and boron-doped diamond anodes, Chemosphere, 68 (2007) 199-209. otwiera się w nowej karcie
  9. N. Flores, F. Sharif, N. Yasri, E. Brillas, I. Sirés, E.P.L. Roberts, Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes, Chemosphere, 201 (2018) 807-815. otwiera się w nowej karcie
  10. M. Shestakova, M. Vinatoru, T.J. Mason, M. Sillanpää, Sonoelectrocatalytic decomposition of methylene blue using Ti/Ta 2 O 5 -SnO 2 electrodes, Ultrasonics Sonochemistry, 23 (2015) 135- 141. otwiera się w nowej karcie
  11. N. Tran, P. Drogui, S. Brar, Sonochemical techniques to degrade pharmaceutical organic pollutants, Environmental chemistry letters, 13 (2015) 251-268. otwiera się w nowej karcie
  12. Z. Eren, Ultrasound as a basic and auxiliary process for dye remediation: A review, Journal of Environmental Management, 104 (2012) 127-141. otwiera się w nowej karcie
  13. M.D. Esclapez, V. Sáez, D. Milán-Yáñez, I. Tudela, O. Louisnard, J. González-García, Sonoelectrochemical treatment of water polluted with trichloroacetic acid: From sonovoltammetry to pre-pilot plant scale, Ultrasonics Sonochemistry, 17 (2010) 1010-1020. otwiera się w nowej karcie
  14. M.T. Taghizadeh, P. Seifi-Aghjekohal, Sonocatalytic degradation of 2-hydroxyethyl cellulose in the presence of some nanoparticles, Ultrasonics sonochemistry, 26 (2015) 265-272. otwiera się w nowej karcie
  15. R.D.C. Soltani, M. Mashayekhi, S. Jorfi, A. Khataee, M.-J. Ghanadzadeh, M. Sillanpää, Implementation of martite nanoparticles prepared through planetary ball milling as a heterogeneous activator of oxone for degradation of tetracycline antibiotic: Ultrasound and peroxy-enhancement, Chemosphere, 210 (2018) 699-708.
  16. M.K. Poddar, M. Arjmand, U. Sundararaj, V.S. Moholkar, Ultrasound-assisted synthesis and characterization of magnetite nanoparticles and poly(methyl methacrylate)/magnetite nanocomposites, Ultrasonics sonochemistry, 43 (2018) 38-51. otwiera się w nowej karcie
  17. J. Xia, G. He, L. Zhang, X. Sun, X. Wang, Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions, Applied Catalysis B: Environmental, 180 (2016) 408-415. otwiera się w nowej karcie
  18. R.A.P.O. d'Amorim, M.I. Teixeira, L.V.E. Caldas, S.O. Souza, Physical, morphological and dosimetric characterization of the Teflon agglutinator to thermoluminescent dosimetry, Journal of Luminescence, 136 (2013) 186-190. otwiera się w nowej karcie
  19. E. Jakab, M. Omastová, Thermal decomposition of polyolefin/carbon black composites, Journal of Analytical and Applied Pyrolysis, 74 (2005) 204-214. otwiera się w nowej karcie
  20. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review, Chemical Engineering Journal, 320 (2017) 608-633. otwiera się w nowej karcie
  21. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation -A review, Chemical Engineering Journal, 338 (2018) 599-627. otwiera się w nowej karcie
  22. A. Khataee, R.D.C. Soltani, A. Karimi, S.W. Joo, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process, Ultrasonics Sonochemistry, 23 (2015) 219-230. otwiera się w nowej karcie
  23. A. Khataee, A. Karimi, S. Arefi-Oskoui, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, B. otwiera się w nowej karcie
  24. Soltani, S.W. Joo, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17, Ultrasonics Sonochemistry, 22 (2015) 371-381.
  25. M. Shestakova, M. Vinatoru, T.J. Mason, E. Iakovleva, M. Sillanpää, Sonoelectrochemical degradation of formic acid using Ti/Ta2O5-SnO2 electrodes, Journal of Molecular Liquids, 223 (2016) 388-394. otwiera się w nowej karcie
  26. A. Hassani, R. Darvishi Cheshmeh Soltani, M. Kıranşan, S. Karaca, C. Karaca, A. Khataee, Ultrasound-assisted adsorption of textile dyes using modified nanoclay: Central composite design optimization, Korean Journal of Chemical Engineering, 33 (2016) 178-188. otwiera się w nowej karcie
  27. C.-H. Weng, K.-L. Tsai, Ultrasound and heat enhanced persulfate oxidation activated with Fe0 aggregate for the decolorization of C.I. Direct Red 23, Ultrasonics Sonochemistry, 29 (2016) 11-18. otwiera się w nowej karcie
  28. S. Sajjadi, A. Khataee, R. Darvishi Cheshmeh Soltani, A. Hasanzadeh, N, S co-doped graphene quantum dot-decorated Fe3O4 nanostructures: Preparation, characterization and catalytic activity, Journal of Physics and Chemistry of Solids, 127 (2019) 140-150. otwiera się w nowej karcie
  29. G. Boczkaj, M. Gągol, M. Klein, A. Przyjazny, Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants, Ultrasonics Sonochemistry, 40 (2018) 969-979. otwiera się w nowej karcie
  30. M. Gągol, A. Przyjazny, G. Boczkaj, Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions, Ultrasonics Sonochemistry, 45 (2018) 257-266. otwiera się w nowej karcie
  31. M. Gągol, A. Przyjazny, G. Boczkaj, Effective method of treatment of industrial effluents under basic pH conditions using acoustic cavitation-A comprehensive comparison with hydrodynamic cavitation processes, Chemical Engineering and Processing-Process Intensification, 128 (2018) 103-113. otwiera się w nowej karcie
  32. R.-J. Lan, J.-T. Li, H.-W. Sun, W.-B. Su, Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation: optimization using response surface methodology, Water Science and Technology, 66 (2012) 2695-2701. otwiera się w nowej karcie
  33. F. Sepyani, R. Darvishi Cheshmeh Soltani, S. Jorfi, H. Godini, M. Safari, Implementation of continuously electro-generated Fe 3 O 4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensification, Journal of Environmental Management, 224 (2018) 315-326. otwiera się w nowej karcie
  34. C.-C. He, C.-Y. Hu, S.-L. Lo, Evaluation of sono-electrocoagulation for the removal of otwiera się w nowej karcie
  35. Reactive Blue 19 passive film removed by ultrasound, Separation and Purification Technology, 165 (2016) 107-113. otwiera się w nowej karcie
  36. R.D.C. Soltani, A. Rezaee, G.S. Khorramabadi, K. Yaghmaeian, Optimization of lead (II) biosorption in an aqueous solution using chemically modified aerobic digested sludge, Water Science and Technology, 63 (2011) 129-135.
  37. A. Hassani, M. Kiranşan, R. Darvishi Cheshmeh Soltani, A. Khataee, S. Karaca, Optimization of the adsorption of a textile dye onto nanoclay using a central composite design, Turkish Journal of Chemistry, 39 (2015) 734-749. otwiera się w nowej karcie
  38. H. Li, H. Lei, Q. Yu, Z. Li, X. Feng, B. Yang, Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL, Chemical Engineering Journal, 160 (2010) 417-422. otwiera się w nowej karcie
  39. R.D.C. Soltani, A.J. Jafari, G.S. Khorramabadi, Investigation of cadmium (II) ions biosorption onto pretreated dried activated sludge, American Journal of Environmental Sciences,
  40. M. Safari, A. Khataee, R. Darvishi Cheshmeh Soltani, R. Rezaee, Ultrasonically facilitated adsorption of an azo dye onto nanostructures obtained from cellulosic wastes of broom and cooler straw, Journal of Colloid and Interface Science, 522 (2018) 228-241. otwiera się w nowej karcie
  41. X. Yu, M. Zhou, G. Ren, L. Ma, A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton, Chemical Engineering Journal, 263 (2015) 92-100. otwiera się w nowej karcie
  42. S. Sajjadi, A. Khataee, R. Darvishi Cheshmeh Soltani, N. Bagheri, A. Karimi, A. Ebadi Fard Azar, Implementation of magnetic Fe 3 O 4 @ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution, Journal of Industrial and Engineering Chemistry, 68 (2018) 406-415. otwiera się w nowej karcie
  43. M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Degradation of pharmaceuticals by ultrasound-based advanced oxidation process, Environmental Chemistry Letters, 14 (2016) 259- 290. otwiera się w nowej karcie
  44. A.R. Khataee, M. Safarpour, M. Zarei, S. Aber, Electrochemical generation of H 2 O 2 using immobilized carbon nanotubes on graphite electrode fed with air: Investigation of operational parameters, Journal of Electroanalytical Chemistry, 659 (2011) 63-68. otwiera się w nowej karcie
  45. K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, G. Lee, M. Jang, A. Jang, N. Her, A. Son, Y. otwiera się w nowej karcie
  46. Yoon, Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: A review, Chemical Engineering Journal, 327 (2017) 629-647.
  47. J.-K. Im, J. Heo, L.K. Boateng, N. Her, J.R.V. Flora, J. Yoon, K.-D. Zoh, Y. Yoon, Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes, Journal of Hazardous Materials, 254-255 (2013) 284-292. otwiera się w nowej karcie
  48. R. Xiao, Z. He, D. Diaz-Rivera, G.Y. Pee, L.K. Weavers, Sonochemical degradation of ciprofloxacin and ibuprofen in the presence of matrix organic compounds, Ultrasonics Sonochemistry, 21 (2014) 428-435. otwiera się w nowej karcie
  49. R. Xiao, Z. Wei, D. Chen, L.K. Weavers, Kinetics and Mechanism of Sonochemical Degradation of Pharmaceuticals in Municipal Wastewater, Environmental Science & Technology, 48 (2014) 9675-9683. otwiera się w nowej karcie
  50. R.A. Al-Juboori, T. Yusaf, V. Aravinthan, L. Bowtell, Investigating natural organic carbon removal and structural alteration induced by pulsed ultrasound, Science of The Total Environment, 541 (2016) 1019-1030. otwiera się w nowej karcie
  51. L. Yang, J.F. Rathman, L.K. Weavers, Degradation of Alkylbenzene Sulfonate Surfactants by Pulsed Ultrasound, The Journal of Physical Chemistry B, 109 (2005) 16203-16209. otwiera się w nowej karcie
  52. R. Darvishi Cheshmeh Soltani, M. Safari, Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization, Ultrasonics Sonochemistry, 32 (2016) 181-190.
  53. M.D.G. de Luna, M.L. Veciana, C.-C. Su, M.-C. Lu, Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, Journal of Hazardous Materials, 217-218 (2012) 200-207. otwiera się w nowej karcie
  54. N. Villota, J.M. Lomas, L.M. Camarero, Study of the paracetamol degradation pathway that generates color and turbidity in oxidized wastewaters by photo-Fenton technology, Journal of Photochemistry and Photobiology A: Chemistry, 329 (2016) 113-119. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 98 razy

Publikacje, które mogą cię zainteresować

Meta Tagi