Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation - Publikacja - MOST Wiedzy

Wyszukiwarka

Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

Abstrakt

This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

Cytowania

  • 2 1

    CrossRef

  • 1 8

    Web of Science

  • 1 9

    Scopus

Cytuj jako

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENERGIES nr 11, wydanie 3, strony 639 - 663,
ISSN: 1996-1073
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Łukajtis R., Kucharska K., Hołowacz I., Rybarczyk P., Wychodnik K., Słupek E., Nowak P., Kamiński M.: Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation// ENERGIES. -Vol. 11, iss. 3 (2018), s.639-663
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/en11030639
Bibliografia: test
  1. Cortivo, P.R.D.; Hickert, L.R.; Hector, R.; Ayub, M.A.Z. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind. Crops Prod. 2018, 113, 10-18. [CrossRef] otwiera się w nowej karcie
  2. Ruiz, H.A.; Silva, D.P.; Ruzene, D.S.; Lima, L.F.; Vicente, A.A.; Teixeira, J.A. Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain-Effect of process conditions. Fuel 2012, 95, 528-536. [CrossRef] otwiera się w nowej karcie
  3. Zhu, J.Q.; Li, X.; Qin, L.; Li, W.C.; Li, H.Z.; Li, B.Z.; Yuan, Y.J. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production. Bioresour. Technol. 2016, 218, 380-387. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Białas, W.; Szymanowska, D.; Grajek, W. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresour. Technol. 2010, 101, 3126-3131. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. Nilsson, A. Control of Fermentation of Lignocellulosic Hydrolysates; Lund University: Lund, Sweden, 2001.
  6. Jung, Y.H.; Kim, I.J.; Kim, J.J.; Oh, K.K.; Han, J.I.; Choi, I.G.; Kim, K.H. Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase. Bioresour. Technol. 2011, 102, 7307-7312. [CrossRef] [PubMed] otwiera się w nowej karcie
  7. Ishola, M.M.; Ylitervo, P.; Taherzadeh, M.J. Co-Utilization of glucose and xylose for enhanced lignocellulosic ethanol production with reverse membrane bioreactors. Membranes 2015, 5, 844-856. [CrossRef] [PubMed] otwiera się w nowej karcie
  8. Tavva, S.S.M.D.; Deshpande, A.; Durbha, S.R.; Palakollu, V.A.R.; Goparaju, A.U.; Yechuri, V.R.; Bandaru, V.R.; Muktinutalapati, V.S.R. Bioethanol production through separate hydrolysis and fermentation of Parthenium hysterophorus biomass. Renew. Energy 2016, 86, 1317-1323. [CrossRef] otwiera się w nowej karcie
  9. Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851-4861. [CrossRef] [PubMed] otwiera się w nowej karcie
  10. Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzyme Res. 2011, 2011, e787532. [CrossRef] [PubMed] otwiera się w nowej karcie
  11. Kumar, G.; Bakonyi, P.; Periyasamy, S.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose biohydrogen: Practical challenges and recent progress. Renew. Sustain. Energy Rev. 2015, 44, 728-737. [CrossRef] otwiera się w nowej karcie
  12. Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7-14. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Bali, G.; Meng, X.; Deneff, J.I.; Sun, Q.; Ragauskas, A.J. The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem 2015, 8, 275-279. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Abudi, Z.N.; Hu, Z.; Xiao, B.; Abood, A.R.; Rajaa, N.; Laghari, M. Effects of pretreatments on thickened waste activated sludge and rice straw co-digestion: Experimental and modeling study. J. Environ. Manag. 2016, 177, 213-222. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Khare, S.K.; Pandey, A.; Larroche, C. Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem. Eng. J. 2015, 102, 38-44. [CrossRef] Energies 2018, 11, 639 23 of 24 otwiera się w nowej karcie
  16. Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1-11. [CrossRef] otwiera się w nowej karcie
  17. Sartori, T.; Tibolla, H.; Prigol, E.; Colla, L.M.; Costa, J.A.V.; Bertolin, T.E. Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using Trichoderma viride. BioMed Res. Int. 2015, 2015, 342716. [CrossRef] [PubMed] otwiera się w nowej karcie
  18. Rabemanolontsoa, H.; Saka, S. Various pretreatments of lignocellulosics. Bioresour. Technol. 2016, 199, 83-91. [CrossRef] [PubMed] otwiera się w nowej karcie
  19. Selig, M.J.; Tucker, M.P.; Law, C.; Doeppke, C.; Himmel, M.E.; Decker, S.R. High throughput determination of glucan and xylan fractions in lignocelluloses. Biotechnol. Lett. 2011, 33, 961-967. [CrossRef] [PubMed] otwiera się w nowej karcie
  20. Trzcinski, A.P.; Stuckey, D.C. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions. Bioresour. Technol. 2015, 185, 441-444. [CrossRef] [PubMed] otwiera się w nowej karcie
  21. Yücel, H.G.; Aksu, Z. Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods. Fuel 2015, 158, 793-799. [CrossRef] otwiera się w nowej karcie
  22. Agbogbo, F.K.; Wenger, K.S. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J. Ind. Microbiol. Biotechnol. 2007, 34, 723-727. [CrossRef] [PubMed] otwiera się w nowej karcie
  23. Kupiainen, L.; Ahola, J.; Tanskanen, J. Kinetics of Formic Acid-catalyzed Cellulose Hydrolysis. BioResources 2014, 9, 2645-2658. [CrossRef] otwiera się w nowej karcie
  24. Sivagurunathan, P.; Kumar, G.; Mudhoo, A.; Rene, E.R.; Saratale, G.D.; Kobayashi, T.; Xu, K.; Kim, S.H.; Kim, D.H. Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew. Sustain. Energy Rev. 2017, 77, 28-42. [CrossRef] otwiera się w nowej karcie
  25. Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675-685. [CrossRef] [PubMed] otwiera się w nowej karcie
  26. Da Silva, C.; De Menezes Silva Conde, M.; Longhi-Wagner, H.M. Olyreae (Poaceae: Bambusoideae) of Marambaia, Rio de Janeiro, Brazil;Olyreae (Poaceae Bambusoideae) da Marambaia, Rio Janeiro, Bras. Rodriguésia 2012, 63, 357-372. [CrossRef] otwiera się w nowej karcie
  27. Lau, M.W.; Gunawan, C.; Balan, V.; Dale, B.E. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol. Biofuels 2010, 3, 11. [CrossRef] [PubMed] otwiera się w nowej karcie
  28. Garcia Sanchez, R.; Karhumaa, K.; Fonseca, C.; Sànchez Nogué, V.; Almeida, J.R.; Larsson, C.U.; Bengtsson, O.; Bettiga, M.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels 2010, 3, 13. [CrossRef] [PubMed] otwiera się w nowej karcie
  29. Wikandari, R.; Millati, R.; Taherzadeh, M.J. Pretreatment of Lignocelluloses with Solvent N-Methylmorpholine N-oxide. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; otwiera się w nowej karcie
  30. García, M.; Gonzaloa, A.; Sánchez, L.; Arauzo, J.; Simoes, C. Methanolysis and ethanolysis of animal fats: A comparative study of the influence of alcohols. Chem. Ind. Chem. Eng. Q. 2011, 17, 91-97. [CrossRef] otwiera się w nowej karcie
  31. Silva, J.P.A.; Mussatto, S.I.; Roberto, I.C. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl. Biochem. Biotechnol. 2010, 162, 1306-1315. [CrossRef] [PubMed] otwiera się w nowej karcie
  32. Alrumman, S.A. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz. J. Microbiol. 2016, 47, 110-119. [CrossRef] [PubMed] otwiera się w nowej karcie
  33. Jiang, Y.; Li, X.; Wang, X.; Meng, L.; Wang, H.; Peng, G.; Wang, X.; Mu, X. Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation. Green Chem. 2012, 14, 2162-2167. [CrossRef] otwiera się w nowej karcie
  34. Hasegawa, I.; Khoo, T.H.; Mae, K. Direct saccharification of lignocellulosic biomass by hydrolysis with formic acid solution. Green Process. Synth. 2013, 2, 143-149. [CrossRef] otwiera się w nowej karcie
  35. Scordia, D.; Cosentino, S.L.; Jeffries, T.W. Enzymatic hydrolysis, simultaneous saccharification and ethanol fermentation of oxalic acid pretreated giant reed (Arundo donax L.). Ind. Crops Prod. 2013, 49, 392-399. [CrossRef] otwiera się w nowej karcie
  36. E Silva, C.F.L.; Schirmer, M.A.; Maeda, R.N.; Barcelos, C.A.; Pereira, N. Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron. J. Biotechnol. 2015, 18, 10-15. [CrossRef] Energies 2018, 11, 639 24 of 24 otwiera się w nowej karcie
  37. Cotana, F.; Barbanera, M.; Foschini, D.; Lascaro, E.; Buratti, C. Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Procedia 2015, 82, 389-394. [CrossRef] otwiera się w nowej karcie
  38. Kuhad, R.C.; Gupta, R.; Khasa, Y.P.; Singh, A. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresour. Technol. 2010, 101, 8348-8354. [CrossRef] [PubMed] otwiera się w nowej karcie
  39. Chaudhary, G.; Singh, L.K.; Ghosh, S. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresour. Technol. 2012, 124, 111-118. [CrossRef] [PubMed] otwiera się w nowej karcie
  40. Taherzadeh, M.J.; Karimi, K. Fermentation Inhibitors in Ethanol Processes and Different Strategies to Reduce Their Effects. In Biofuels; Elsevier: São Paulo, Brazil, 2011; pp. 287-311, ISBN 9780123850997. otwiera się w nowej karcie
  41. Kim, S.K.; Park, D.H.; Song, S.H.; Wee, Y.J.; Jeong, G.T. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioprocess Biosyst. Eng. 2013, 36, 659-666. [CrossRef] [PubMed] otwiera się w nowej karcie
  42. Kundu, C.; Trinh, L.T.P.; Lee, H.J.; Lee, J.W. Bioethanol production from oxalic acid-pretreated biomass and hemicellulose-rich hydrolysates via a combined detoxification process. Fuel 2015, 161, 129-136. [CrossRef] otwiera się w nowej karcie
  43. Keshav, P.K.; Shaik, N.; Koti, S.; Linga, V.R. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind. Crops Prod. 2016, 91, 323-331. [CrossRef] otwiera się w nowej karcie
  44. Lee, H.J.; Lim, W.S.; Lee, J.W. Improvement of ethanol fermentation from lignocellulosic hydrolysates by the removal of inhibitors. J. Ind. Eng. Chem. 2013, 19, 2010-2015. [CrossRef] otwiera się w nowej karcie
  45. Sindhu, R.; Kuttiraja, M.; Prabisha, T.P.; Binod, P.; Sukumaran, R.K.; Pandey, A. Bioresource Technology Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. Bioresour. Technol. 2016, 215, 110-116. [CrossRef] [PubMed] otwiera się w nowej karcie
  46. Zhu, J.; Yong, Q.; Xu, Y.; Yu, S. Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresour. Technol. 2011, 102, 1663-1668. [CrossRef] [PubMed] otwiera się w nowej karcie
  47. Narra, M.; James, J.P.; Balasubramanian, V. Simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces sp. for ethanol production. Bioresour. Technol. 2015, 179, 331-338. [CrossRef] [PubMed] otwiera się w nowej karcie
  48. Moreno, A.; Ibarra, D.; Mialon, A.; Ballesteros, M. A Bacterial Laccase for Enhancing Saccharification and Ethanol Fermentation of Steam-Pretreated Biomass. Fermentation 2016, 2, 11. [CrossRef] otwiera się w nowej karcie
  49. Kossatz, H.L.; Rose, S.H.; Viljoen-Bloom, M.; van Zyl, W.H. Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process. Process Biochem. 2017, 53, 10-16. [CrossRef] otwiera się w nowej karcie
  50. McMillan, J.D. Xylose Fermentation to Ethanol: A Review. Available online: https://www.nrel.gov/docs/ legosti/old/4944.pdf (accessed on 4 Mar 2018). otwiera się w nowej karcie
  51. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP);
  52. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; Technical Report NREL/TP-510-42623; NREL: Golden, CO, USA, 2008; pp. 1-14. otwiera się w nowej karcie
  53. Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples; Technical Report NREL/TP-510-42621; otwiera się w nowej karcie
  54. NREL: Golden, CO, USA, 2008; p. 9. otwiera się w nowej karcie
  55. Hames, B.; Scarlata, C.; Nrel, A.S. Determination of Protein Content in Biomass; Technical Report NREL/TP-510-42625; NREL: Golden, CO, USA, 2008. otwiera się w nowej karcie
  56. Resch, M.G.; Baker, J.O.; Nrel, S.R.D. Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Laboratory Analytical Procedure (LAP); otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 95 razy

Publikacje, które mogą cię zainteresować

Meta Tagi