Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion - Publikacja - MOST Wiedzy

Wyszukiwarka

Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion

Abstrakt

The classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications. The chapter presents an experimental study of several methods for real motion and motion intent classification (rest/upper/lower limbs motion, and rest/left/right hand motion). First, our approach to EEG recordings segmentation and feature extraction is presented. Then, 5 classifiers (Naïve Bayes, Decision Trees, Random Forest, Nearest-Neighbors NNge, Rough Set classifier) are trained and tested using examples from an open database. Feature subsets are selected for consecutive classification experiments, reducing the number of required EEG electrodes. Methods comparison and obtained results are presented, and a study of features feeding the classifiers is provided. Differences among participating subjects and accuracies for real and imaginary motion are discussed. It is shown that though classification accuracy varies from person to person, it could exceed 80% for some classifiers.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 311 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (Springer International Publishing AG 2018)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja monograficzna
Typ:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Tytuł wydania:
Advances in Feature Selection for Data and Pattern Recognition strony 227 - 239
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Szczuko P., Lech M., Czyżewski A.: Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion// Advances in Feature Selection for Data and Pattern Recognition/ ed. Stańczyk U., Zielosko B., Jain L. : Springer, 2018, s.227-239
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-319-67588-6_12
Weryfikacja:
Politechnika Gdańska

wyświetlono 198 razy

Publikacje, które mogą cię zainteresować

Meta Tagi