Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption - Publikacja - MOST Wiedzy

Wyszukiwarka

Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption

Abstrakt

Graphene hydrogels were prepared by ascorbic acid-assisted gelation of graphene oxide (GO) aqueous suspensions both in acidic and basic conditions. Different mass ratio of ascorbic acid (AA) to GO was used (namely 20:1 and 10:1). In order to eliminate the influence of AA on the final structure of hydrogels, samples without AA were prepared by a hydrothermal gelation of GO in an autoclave. An in-depth structural characterization of the obtained materials was performed before and after supercritical drying by means of FTIR, XRD and SEM. Surface area of hydrogels was determined using the methylene blue adsorption method. BET surface area and pore volume analysis of aerogels was also performed. The effect of initial GO concentration and volume on the final graphene aerogels structure was determined. Electrochemical properties of samples were also evaluated. Finally, gold nanoparticles (Au NP) adsorption on graphene hydro- and aerogels was presented for the first time. Graphene hydrogels and aerogels are promising candidates for practical applications e.g. in the Au NP removal from wastewater.

Cytowania

  • 2 3

    CrossRef

  • 2 2

    Web of Science

  • 2 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 141 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS nr 528, strony 65 - 73,
ISSN: 0927-7757
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Kondratowicz I., Żelechowska K., Nadolska M., Jażdżewska A., Gazda M.: Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption// COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS. -Vol. 528, (2017), s.65-73
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.colsurfa.2017.05.063
Bibliografia: test
  1. X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang, P. Chen, 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing, ACS Appl. Mater. Interfaces 4 (2012) 3129-3133, http://dx.doi.org/10. 1021/am300459m. otwiera się w nowej karcie
  2. D.A.C. Brownson, L.C.Z. Figueiredo-Filho, X. Ji, M. Gomez-Mingot, J. Iniesta, O. Fatibello-Filho, D.K. Kampourisa, C.B. Banks, Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non- aqueous media, J. Mater. Chem. A 1 (2013) 5962, http://dx.doi.org/10.1039/ C3TA10727B. otwiera się w nowej karcie
  3. Y. Zhong, Z. Mi, F. Huang, T. Lin, D. Wan, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management, Sol. Energy Mater. otwiera się w nowej karcie
  4. Sol. C 113 (2013) 195-200, http://dx.doi.org/10.1016/j.solmat.2013.01.046. otwiera się w nowej karcie
  5. C.C. Ji, M.W. Xua, S.J. Bao, C.J. Cai, Z.J. Lu, H. Chai, F. Yang, H. Wei, Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors, J. Colloid Interface Sci 407 (2013) 416-424, http://dx.doi.org/10. 1016/j.jcis.2013.06.054. otwiera się w nowej karcie
  6. I. Kondratowicz, K. Żelechowska, D. Majdecka, R. Bilewicz, Synthesis and mod- ification of reduced graphene oxide aerogels for biofuel cell applications, Mat. Sci. Poland 33 (2015) 292-300, http://dx.doi.org/10.1515/msp-2015-0042. otwiera się w nowej karcie
  7. K. Żelechowska, B. Trawiński, S. Dramińska, D. Majdecka, R. Bilewicz, B. Kusz, Oxygen biosensor based on carbon nanotubes directly grown on graphitic substrate, Sens. Actuators B: Chem. 240 (2017) 1308-1313, http://dx.doi.org/10.1016/j.snb. 2016.09.081. otwiera się w nowej karcie
  8. P. Liu, Z. Fan, A. Mikhalchan, T. Tran, D. Jewell, H. Duong, A. Marconnet, Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation, ACS Appl. Mater. Interfaces 8 (2016) 17461-17471, http://dx.doi.org/10.1021/acsami.6b04114. otwiera się w nowej karcie
  9. T. Tran, Z. Fan, P. Liu, H. Duong, Advanced morphology-controlled manufacturing of carbon nanotube fibers, thin films and aerogels from aerogel technique, Asia Pacific Confederation of Chemical Engineering Congress 2015: APCChE 2015, Incorporating CHEMECA 2015, Melbourne : Engineers Australia, 2015, pp. 2444-2451 (ISBN: 9781922107473).
  10. H. Duong, F. Gong, P. Liu, T. Tran, Advanced fabrication and properties of aligned carbon nanotube composites: experiments and modeling, Carbon Nanotube -Curr. otwiera się w nowej karcie
  11. Progress Polym. Compos. Intech (2015) 47-72, http://dx.doi.org/10.5772/62510. otwiera się w nowej karcie
  12. H. Cheng, P. Kohl, P. Liu, T. Tran, H. Duong, Continuous self-assembly of carbon nanotube thin films and their composites for supercapacitors, Colloid Surf. A 481 (2015) 626-632, http://dx.doi.org/10.1016/j.colsurfa.2015.06.039. otwiera się w nowej karcie
  13. Y. Ding, J. Zhu, C. Wang, B. Dai, Y. Li, Y. Qin, F. Xu, Q. Peng, Z. Yang, J. Bai, W. Cao, Y. Yuan, Y. Li, Multifunctional three-dimensional graphene nanoribbons otwiera się w nowej karcie
  14. Fig. 7. SEM images of A. dried graphene hydrogel and B. graphene aerogel after gold nanoparticles adsorption. Arrows point gold nanoparticles. Scale 20 μm. Inset: Scale 250 nm. otwiera się w nowej karcie
  15. Fig. 8. A. Au NP adsorption vs. MB surface area for graphene hydrogels and B. Au NP adsorption vs. BET surface area for graphene aerogels prepared in AC anc BC. composite sponge, Carbon 104 (2016) 133-140, http://dx.doi.org/10.1016/j. carbon.2016.03.058. otwiera się w nowej karcie
  16. S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications, Chem. Soc. Rev. 42 (2013) 794, http://dx.doi.org/10.1039/C2CS35353A. otwiera się w nowej karcie
  17. B. Yaocai, R.B. Rakhi, W. Chen, H.N. Alshareef, Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor perfor- mance, J. Power Sources 233 (2013) 313-319, http://dx.doi.org/10.1016/j. jpowsour.2013.01.122. otwiera się w nowej karcie
  18. H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Fabrication and char- acterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth, Int. J. Nanomed. 6 (2011) 1817-1823, http://dx. doi.org/10.2147/IJN.S23392. otwiera się w nowej karcie
  19. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano 4 (2010) 4324-4330, http://dx.doi.org/10.1021/ nn101187z. otwiera się w nowej karcie
  20. K. Hu, X. Xie, T. Szkopek, M. Cerruti, Understanding hydrothermally reduced graphene oxide hydrogels: from reaction products to hydrogel properties, Chem. Mater. 28 (6) (2016) 1756-1768, http://dx.doi.org/10.1021/acs.chemmater. 5b04713. otwiera się w nowej karcie
  21. Y. Xie, X. Sheng, X. Delong, L. Zixian, Z. Xinya, L. Zhong, Fabricating graphene hydrogels with controllable pore structure via one-step chemical reduction process, Carbon 109 (2016) 673-680, http://dx.doi.org/10.1016/j.carbon.2016.08.079. otwiera się w nowej karcie
  22. S.T. Nguyen, H.T. Nguyen, A. Rinaldi, N.P.V. Nguyen, Z. Fan, H.M. Duong, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloid Surf. A 414 (2012) 352-358, http://dx.doi.org/10.1016/j.colsurfa.2012.08.048. otwiera się w nowej karcie
  23. Z. Fan, D. Zhi Yong Tng, S.T. Nguyen, J. Feng, C. Lin, P. Xiao, L. Lu, H.M. Duong, Morphology effects on electrical and thermal properties of binderless graphene aerogels, Chem. Phys. Lett. 561-562 (2013) 92-96, http://dx.doi.org/10.1016/j. cplett.2013.01.033. otwiera się w nowej karcie
  24. X.H. Xia, D.L. Chao, Y.Q. Zhang, Z.X. Shen, Three-dimensional graphene and their integrated electrodes, Nano Today 9 (2014) 785-807, http://dx.doi.org/10.1016/j. nantod.2014.12.001. otwiera się w nowej karcie
  25. J.N. Tiwari, K. Mahesh, N.H. Le, K. Christian Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions, Carbon 56 (2013) 173-182, http://dx.doi.org/ 10.1016/j.carbon.2013.01.001. otwiera się w nowej karcie
  26. J. Li, H. Meng, S. Xie, B. Zhang, L. Li, H. Ma, J. Zhanga, M. Yua, Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids, J. Mater. Chem. A 2 (2014) 2934, http://dx.doi.org/ 10.1039/C3TA14725H. otwiera się w nowej karcie
  27. W. Peng, H. Li, Y. Liu, S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites, J. Mol. Liq. 230 (2017) 496-504, http://dx. doi.org/10.1016/j.molliq.2017.01.064. otwiera się w nowej karcie
  28. J. Wang, B. Chen, Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials, Chem. Eng. J. 281 (2015) 379-388, http://dx.doi.org/10.1016/j.cej.2015.06.102. otwiera się w nowej karcie
  29. H. Huang, T. Chen, X. Liu, H. Ma, Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials, Anal. Chim. Acta 852 (2014) 45-54, http://dx.doi.org/10. 1016/j.aca.2014.09.010. otwiera się w nowej karcie
  30. V.K. Gupta, S. Agarwal, A.K. Bharti, H. Sadegh, Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal (in press) http://dx.doi.org/10.1016/j.molliq.2017.01.083. otwiera się w nowej karcie
  31. R. Zare-Dorabei, S.M. Ferdowsi, A. Barzin, A. Tadjarodi, Highly efficient simulta- neous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,20-dipyridylamine: central composite design optimization, Ultrason. Sonochem. 32 (2016) 265-276, http://dx. doi.org/10.1016/j.ultsonch.2016.03.020. otwiera się w nowej karcie
  32. Y. Zhang, Y. Liu, X. Wang, Z. Sun, J. Ma, T. Wu, F. Xing, J. Gao, Porous graphene oxide/carboxymethyl cellulose monoliths, with highmetal ion adsorption, Carbohyd. Polym. 101 (2014) 392-400, http://dx.doi.org/10.1016/j.carbpol.2013. 09.066. otwiera się w nowej karcie
  33. L.P. Lingamdinnea, Y.L. Choi, I.S. Kimb, J.K. Yang, J.R. Kodurub, Y.Y. Chang, Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides, J. Hazard. Mater. 326 (2017) 145-156, http://dx.doi.org/10.1016/j.jhazmat.2016. 12.035. otwiera się w nowej karcie
  34. S. Goswami, P. Banerjee, S. Datta, A. Mukhopadhayay, P. Das, Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater, Process Saf. Environ. 106 (2017) 163-172, http://dx.doi.org/10.1016/j.psep.2017.01.003. otwiera się w nowej karcie
  35. M. Heidarizad, S.S. Şengör, Synthesis of graphene oxide/magnesium oxide nano- composites with high-rate adsorption of methylene blue, J. Mol. Liq. 224 (2016) 607-617, http://dx.doi.org/10.1016/j.molliq.2016.09.049. otwiera się w nowej karcie
  36. Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, One-pot self-assembled three- dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities, ACS Appl. Mater. Interfaces 5 (2013) 2227-2233, http://dx.doi.org/10.1021/am303299r. otwiera się w nowej karcie
  37. Y. Yang, C.L. Long, H.P. Li, Q. Wang, Z.G. Yang, Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry, Sci. Total. Environ. 563-564 (2016) 996-1007, http:// dx.doi.org/10.1016/j.scitotenv.2015.12.150. otwiera się w nowej karcie
  38. S.P. Mandyla, G. Tsogas, A.G. Vlessidis, D.L. Giokas, Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction, J. Hazard. Mater. 323 (2017) 67-74, http://dx.doi.org/10.1016/j.jhazmat.2016.03. 039. otwiera się w nowej karcie
  39. B. Nowacka, J.F. Ranville, S. Diamond, J.A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A.A. Koelmans, S.J. Klaine, Potential scenarios for nanomaterials release and subsequent alteration in the environment, Environ. Toxicol. Chem. 31 (2012) 50-59, http://dx.doi.org/10.1002/etc.726. otwiera się w nowej karcie
  40. Q. Sun, Y. Li, T. Tang, Z. Yuan, C.P. Yu, Removal of silver nanoparticles by coagulation processes, J. Hazard. Mater. 261 (2013) 414-420, http://dx.doi.org/ 10.1016/j.jhazmat.2013.07.066. otwiera się w nowej karcie
  41. D.F. Lawler, A.M. Mikelonis, I. Kim, B.L.T. Lau, S. Youn, Silver nanoparticle removal from drinking water: flocculation/sedimentation or filtration, Water Sci. Techol.: Water Supply 13.5 (2013) 1181-1187, http://dx.doi.org/10.2166/ws. 2013.125. otwiera się w nowej karcie
  42. D. Setyono, S. Valiyaveettil, Functionalized paper-A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water, J. Hazard. Mater. 302 (2016) 120-128, http://dx.doi.org/10.1016/j.jhazmat.2015.09.046. otwiera się w nowej karcie
  43. K. Żelechowska, I. Kondratowicz, M. Gazda, Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization, Pol. J. Chem. Technol. 18 (4) (2017) 47-55, http://dx.doi.org/ 10.1515/pjct-2016-0070. otwiera się w nowej karcie
  44. N.N. Long, L.V. Vu, C.H. Kiem, S.C. Doanh, C.T. Nguyet, P.T. Hang, N.D. Thien, L.M. Quynh, Synthesis and optical properties of colloidal gold nanoparticles, J. Phys.: Conf. Ser. 187 (2009) 012026, http://dx.doi.org/10.1088/1742-6596/187/ 1/012026. otwiera się w nowej karcie
  45. G. Luo, H. Huang, C. Lei, Z. Cheng, X. Wu, S. Tang, Y. Du, Facile synthesis of porous graphene as binder-free electrode for supercapacitor application, Appl. Surf. Sci 366 (2016) 46-52, http://dx.doi.org/10.1016/j.apsusc.2016.01.015. otwiera się w nowej karcie
  46. Z. Fan, Y. Tng, C.X. Ting Lima, P. Liu, S.T. Nguyen, P. Xiao, A. Marconnet, C.Y.H. Lima, H.M. Duong, Thermal and electrical properties of graphene/carbon nanotube aerogels, Colloids Surf. A 445 (2014) 48-53, http://dx.doi.org/10.1016/j. colsurfa.2013.12.083. otwiera się w nowej karcie
  47. Z. Sui, X. Zhang, Y. Lei, Y. Luo, Easy and green synthesis of reduced graphite oxide- based Hydrogels, Carbon 49 (2011) 4314-4321, http://dx.doi.org/10.1016/j. carbon.2011.06.006. otwiera się w nowej karcie
  48. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid, Chem. Commun. 46 (2010) 1112-1114, http://dx.doi.org/10. 1039/B917705A. otwiera się w nowej karcie
  49. A.P. Goldstein, W. Mickelson, A. Machness, G. Lee, M.A. Worsley, L. Woo, A. Zettl, Simultaneous sheet cross-linking and deoxygenation in the graphene oxide sol-gel transition, J. Phys. Chem. C 118 (2014) 28855-28860, http://dx.doi.org/10.1021/ jp5092027. otwiera się w nowej karcie
  50. H. Bai, C. Li, X. Wang, G. Shi, On the gelation of graphene oxide, J. Phys. Chem. C 115 (2011) 5545-5551, http://dx.doi.org/10.1021/jp1120299. otwiera się w nowej karcie
  51. J.W. Yoo, D.S. Yun, H.J. Kim, Influence of reaction parameters on size and shape of silica nanoparticles, J. Nanosci. Nanotechnol. 6 (11) (2006) 3343-3346, http://dx. doi.org/10.1166/jnn.2006.006. otwiera się w nowej karcie
  52. G.A. Rance, A.N. Khlobystov, Interactions of carbon nanotubes and gold nanopar- ticles: the effects of solvent dielectric constant and temperature on controlled assembly of superstructures, Dalton Trans. 43 (2014) 7400, http://dx.doi.org/10. 1039/c3dt53372g. otwiera się w nowej karcie
  53. F. Wang, J. Zhao, M. Zhu, J. Yu, Y.-S. Hub, H. Liu, Selective adsorption-deposition of gold nanoparticles onto monodispersed hydrothermal carbon spherules: a reduction-deposition coupled mechanism, J. Mater. Chem. A 3 (2015) 1666, http:// dx.doi.org/10.1039/C4TA05597G. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 88 razy

Publikacje, które mogą cię zainteresować

Meta Tagi