Abstrakt
Aerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction and uncertainty (EGONN) partially alleviates this challenge. A unique feature of EGONN is its ability to sequentially sample the design space and continuously update the NN prediction using an uncertainty model based on NNs. This work proposes a novel extension to EGONN that enables efficient handling of nonlinear constraints and a continuous update of the prediction and prediction uncertainty data sets. The proposed algorithm is demonstrated on constrained airfoil shape optimization in transonic flow and compared against state-of-the-art GBO with adjoints. The results show that the proposed constrained EGONN algorithm yields comparable optimal designs as GBO at a similar computational cost.
Cytowania
-
3
CrossRef
-
0
Web of Science
-
3
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2023
- Opis bibliograficzny:
- Koratikere P., Leifsson L., Kozieł S., Pietrenko-Dąbrowska A.: Constrained aerodynamic shape optimization using neural networks and sequential sampling// / : , 2023,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-36024-4_33
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 86 razy
Publikacje, które mogą cię zainteresować
Efficient uncertainty quantification using sequential sampling-based neural networks
- P. Koratikere,
- L. Leifsson,
- S. Kozieł
- + 1 autorów
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
- L. Leifsson,
- J. Nagawkar,
- L. Barnet
- + 3 autorów
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
- Y. Liu,
- L. Leifsson,
- S. Kozieł
- + 1 autorów