Cooperation of mono- and bi-articular muscles: human lower limb - Publikacja - MOST Wiedzy


Cooperation of mono- and bi-articular muscles: human lower limb


Objectives: The aim of this study was to create and analyze a Pareto-optimal problem that would describe cooperation between mono- and bi-articulate lower limb muscles in sagittal plane. Methods: Equations describing the problem were derived and analyzed, additional constrains were introduced and experimental verification based on gait video analysis was performed. Results: Uncertainty of Pareto-optimal solution is shown for the muscular-skeletal system. An explanation of this situation is presented and discussed. Moreover, this theoretical observation is compared with a lack of gait reproducibility. Small but noticeable differences in gait cycles are shown and explained. Conclusions: A muscular system redundancy is shown and explained by the meaning of Pareto problem. Theoretical considerations were confirmed through a gait analysis. This leads to the conclusion, that during muscle cooperation each movement cycle can be different from the previous one, however due to physiological restrictions only a narrow equivalence class of the possible solutions exists.

Autorzy (5)

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ISSN: 1108-7161
Rok wydania:
Opis bibliograficzny:
Zagrodny B., Ludwicki M., Wojnicz W., Mrozowski J., Awrejcewicz J.: Cooperation of mono- and bi-articular muscles: human lower limb// JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS. -Vol. 18, nr. 2 (2018), s.176-182
Bibliografia: test
  1. Fick R. Handbuch der Anatomie des Menschen, vol. 2. Jena: Gustav Fisher; 1910.
  2. Sokołowska-Pituchowa J. ed. Human anatomy (in Polish). Warsaw: Medical Publisher PZWL; 1989.
  3. Agur A, Dalley A. Grant's Atlas of Anatomy. Philadelphia: Lippincot, William and Wilkins; 2009.
  4. Ivancevic V, Sharma S. Complexity in Human and Humanoid Biomechanics. Int. J. of Human. Robot. 2008;5(4):679-98. otwiera się w nowej karcie
  5. Kuo A.D. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human Mov Sci 2007;26(4):617-656. otwiera się w nowej karcie
  6. Harderscheit B.C. Movement variability As a Clinical Measure for Locomotion. J of Appl Biomech 2000; 16:419-27. otwiera się w nowej karcie
  7. Andrysiak T, Awrejcewicz J, Ludwicki M, Zagrodny B. On the human arm motion camera tracking system. Vibr in Phys Syst 2012, XXV:41-46.
  8. Reicher M. Human anatomy. General anatomy, bones, joints and ligaments, muscles (in Polish). Warsaw: Medical Publisher PZWL; 1976.
  9. Gribble PL, Ostry DJ. Compensation for Interaction Torques During Single-and Multijoint Limb Movement. J of Neurophysiol 1999;82:2310-26. otwiera się w nowej karcie
  10. Prilutsky BI, Zatziorsky VM. Optimization-based models of muscle coordination. Exercise and Sport Sci Rev 2002;30:32-38. otwiera się w nowej karcie
  11. Latash M. Fundamentals of Motor Control. Amsterdam: Elsevier, Academic Press; 2012. otwiera się w nowej karcie
  12. Hirashima M, Oya T. How does the brain solve muscle redundancy? Filling the gap between optimization and muscle synergy hypotheses. Neurosci Res 2016; 104:80-87. otwiera się w nowej karcie
  13. Siemieński A. Inverse optimization problem of interacting skeletal muscles (in Polish). Wrocław: Studies and Monographs of the Academy of Physical Education in Wrocław nr 87; 2007. otwiera się w nowej karcie
  14. Wojnicz W, Witbrott E. Analysis of Muscles behaviour. Part II. The Computational model of muscles group acting on the elbow joint. Act of Bioeng and Biomech 2010;12(1):3-10. otwiera się w nowej karcie
  15. Wang X. Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements. Biol Cyb 1999; 80:449-63. otwiera się w nowej karcie
  16. Okadome T, Honda M. Kinematic construction of the trajectory of sequential arm movements. Biol Cy. 1999; 80:157-69. otwiera się w nowej karcie
  17. Loss J, Candotti C. Comparative study between two elbow flexion exercises using the estimated resultant muscle force. Brazilian J for Phys Therapy 2008;12(6):502-10. otwiera się w nowej karcie
  18. Hollister A, Jatana S, Sing A et al. The axes of rotation of the knee. Clin Orthop and Rel Res 1993;290:259-68. otwiera się w nowej karcie
  19. Botasso CL, Prilutsky BI, Croe A, Imberti E, Sartirana S. A numerical procedure for inferring from experimental data optimisation cost functions using multibody model of the neuro-musculoskeletal system. Multibody Syst Dyn 2006;16:123-54. otwiera się w nowej karcie
  20. Zagrodny B. Modeling, numerical simulation and designing of the arm-forearm artificial muscle system prototype, Ph.D. Thesis. Łódź: Łódź University of Technology; 2012.
  21. Awrejcewicz J, Kudra G, Zagrodny B. Nonlinearity of muscle stiffness. Theoret and Appl Mech Lett 2012; otwiera się w nowej karcie
  22. Frederick A, Matsen MD, Chebli C. Principles for the Evaluation and Management of Shoulder Instability. The J of Bone and Joint Surg 2006;8(3):647-59.
  23. Zagrodny B, Awrejcewicz J. Cooperation of one and multi-joint muscles. Nonl Dyn. and Syst Theory 2015; 15(1):99-106.
Politechnika Gdańska

wyświetlono 35 razy

Publikacje, które mogą cię zainteresować

Meta Tagi