Cost Analysis of Prefabricated Elements of the Ordinary and Lightweight Concrete Walls in Residential Construction - Publikacja - MOST Wiedzy

Wyszukiwarka

Cost Analysis of Prefabricated Elements of the Ordinary and Lightweight Concrete Walls in Residential Construction

Abstrakt

Global economic growth causes an increase in natural resources exploitation, particularly in construction branch. The growing use of electricity contributes to climate change. Therefore, it is necessary to search the solutions, which will allow for reducing natural resources exploitation. One of the many opportunities to do that is the application of the recycled materials. The authors of the given article have analyzed three variants of construction solutions. One of them was the production of the walls of a building from reinforced concrete prefabricates with styrofoam insulation layer. The second variant for analysis were prefabricated walls from lightweight concrete, made of sintered clay aggregate with a foam core. The third proposed variant was a system of multi-layered walls, which was made of lightweight concrete with granulated expanded glass aggregate (GEGA). The main objective of the research was to assess the use of lightweight GEGA prefabricates, focusing on economic and technological aspects of the solution. The authors have analyzed the entire construction costs; ceilings and stairs were assumed as reinforced concrete elements. In calculations, the weight of the elements was taken into account, as well as transportation and mounting costs. On the basis of this cost analysis, it was concluded that the use of prefabricated element, made of lightweight concrete with GEGA, could be a replacement for the solutions, widely applied until these days. The analysis has also shown that the use of prefabricates with GEGA is sensible from the economic viewpoint, as it allows for saving construction time. Moreover, the solutions, proposed here, allow for saving natural resources and assuming a more environmentally friendly and caring attitude.

Cytowania

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 249 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials nr 12, strony 1 - 19,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kurpińska M., Grzyl B., Kristowski A.: Cost Analysis of Prefabricated Elements of the Ordinary and Lightweight Concrete Walls in Residential Construction// Materials -Vol. 12,iss. 3629 (2019), s.1-19
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma12213629
Bibliografia: test
  1. PN-EN 206:2013+A1:2016 Concrete. Specification, Performance, Production and Conformity. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030326195 (accessed on 31 December 2013). otwiera się w nowej karcie
  2. Oktay, H.; Yumrutas, R.; Akpolat, A. Mechanical and thermal properties of lightweight aggregate concretes. Constr. Build. Mater. 2015, 96, 217-225. otwiera się w nowej karcie
  3. Chandra, S.; Berntsson, L. Lightweight Aggregate Concrete. Science, Technology and Applications; Noyes Publications, Norwich, UK; New York, NY, USA, 2002; ISBN 0-8155-1486-7. otwiera się w nowej karcie
  4. Šeputytė-Jucikė, J.; Sinica, M. The effect of expanded glass and polystyrene waste on the properties of lightweight aggregate concrete. Eng. Struct. Technol. 2016, 8, 31-40. otwiera się w nowej karcie
  5. Ünal, O.; Uygunoglu, T.; Yildiz, A. Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 2007, 42, 584-590. otwiera się w nowej karcie
  6. Krishnamoorthy, R.R.; Zujip, J.A. Thermal conductivity and microstructure of concrete using recycle glass as a fine aggregate replacement. Int. J. Adv. Res. Technol. 2013, 3, 463-471.
  7. Kurpińska, M. Properties of concrete impregnated using epoxy composition. Roads Bridges-Drog. Mosty 2011, 10, 59-80. otwiera się w nowej karcie
  8. Bumanis, G.; Bajare, D.; Korjakins, A. Mechanical and thermal properties of lightweight concrete made from expanded glass. J. Sustain. Arch. Civ. Eng. 2013, 2, 26-32. otwiera się w nowej karcie
  9. Omidimoaf, E.; Rajabi, A.M.; Abdelgader, H.S.; Kurpińska, M.; Wilde, K. Effect of coarse grain aggregate on strength parameters of two-stage concrete. Mater. Bud. 2019, 3, 1-3. doi:10.15199/33.2019.03.0. otwiera się w nowej karcie
  10. Rumsys, D.; Spudulis, E.; Bacinskas, D.; Kaklauskas, G. Compressive Strenght and Durability Properties Structural Lightweight Concrete with Fine Expanded Class and/or Clay Aggregates. Materials 2018, 11, 2434. doi:10.3390/mal11122434. otwiera się w nowej karcie
  11. Ke, Y.; Beaucor, A.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821- 2828. otwiera się w nowej karcie
  12. Kurpińska, M.; Ferenc, T. Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate. In Proceedings of the II International Conference of Computational Methods in Engineering Science (CMES'2017), Lublin, Poland, 23-25 November 2017. otwiera się w nowej karcie
  13. Lo, T.Y.; Tang, W.C.; Cui, H.Z. The effects of aggregate properties on lightweight concrete. Build. Environ. 2007, 42, 3025-3029. otwiera się w nowej karcie
  14. Wang, J.Y.; Chia, K.S.; Liew, J.Y.R.; Zhang, M.H. Flexural performance of fiber-reinforced ultra-lightweight cement composites with low fiber content. Cem. Concr. Compos. 2013, 43, 39-47. otwiera się w nowej karcie
  15. Kristowski, A.; Grzyl, B.; Kurpińska, M.; Pszczoła, M. The rigid and flexible road pavements in terms of life cycle costs. In Proceedings of the Creative Construction Conference 2018, Ljubljana, Slovenia, 30 June- 3 July 2018. doi:10.3311/CCC2018-030. otwiera się w nowej karcie
  16. Limbachiya, M.; Meddah, M.; Fotiadou, S. Performance of granulated foam glass concrete. Constr. Build. Mater. 2012, 28, 759-768. otwiera się w nowej karcie
  17. Khatib, J.M.; Shariff, S.; Negim, E.M. Effect of incorporating foamed glass on the flexural behaviour of reinforced concrete beams. World Appl. Sci. J. 2012, 19, 47-51. otwiera się w nowej karcie
  18. Chung, S.Y.; Abd Elrahman, M.; Sikora, P.; Rucinska, T.; Horszczaruk, E.; Stephan, D. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches. Materials 2017, 10, 1354. doi:10.3390/ma10121354. otwiera się w nowej karcie
  19. Kurpińska, M.; Ferenc, T. Application of lightweight cement composite with foamed glass aggregate in shell structures. Shell Struct. Theory Appl. 2018, 4, 549-552. otwiera się w nowej karcie
  20. Kurpinska, M.; Kułak, L. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks. Materials 2019, 12, 2002. doi:10.3390/ma12122002. otwiera się w nowej karcie
  21. Kralj, D. Experimental study of recycling lightweight concrete with aggregates containing expanded glass. Process. Saf. Environ. Prot. 2006, 87, 267-273. otwiera się w nowej karcie
  22. Brückner, T.; Fuchs, A.; Wistlich, L.; Hoess, A.; Nies, B.; Gbureck, U. Prefabricated and Self-Setting Cement Laminates. Materials 2019, 12, 834. doi:10.3390/ma12050834. otwiera się w nowej karcie
  23. Liu, S.; Wang, S.; Tang, W.; Hu, N.; Wei, J. Inhibitory E_ect of waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate Materials. Materials 2015, 8, 6849-6862. otwiera się w nowej karcie
  24. Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Igarashi, T. Performance of pavements incorporating waste glass: The current state of the art. Renew. Sustain. Energy Rev. 2016, 64, 211-236. otwiera się w nowej karcie
  25. Mariak, A.; Kurpińska, M.; Wilde, K. Maturity curve for estimating the in-place strength of high performance concrete. MATEC Web Conf. 2019, 262, 06007. otwiera się w nowej karcie
  26. Mariak, A.; Kurpińska, M. The effect of macro polymer fibres length and content on the fibre reinforced concrete. MATEC Web Conf. 2018, 219, 03004. otwiera się w nowej karcie
  27. Gong, T.; Yang, J.; Hu, H.; Xu, F. Construction Technology of Off-Site Precast Concrete Buildings. Front. Eng. Manag. 2015, 2, 122. doi:10.15302/J-FEM-2015039. otwiera się w nowej karcie
  28. Pons, O.; Oliva, J.M.; Maas, S.R. Improving the Learning Process in the Latest Prefabricated School Buildings. Improv. Sch. 2010, 13, 249-265. doi:10.1177/1365480210390089. otwiera się w nowej karcie
  29. Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod. 2015, 109, 131-143. doi:10.1016/j.jclepro.2015.04.120. otwiera się w nowej karcie
  30. Jiao, L.; Li, X.D. Application of Prefabricated Concrete in Residential Buildings and its Safety Management. Arch. Civ. Eng. 2018, 64, 21-35. doi:10.2478/ace-2018-0014. otwiera się w nowej karcie
  31. PN-EN 12524:2000. Building Materials and Products. Hygrothermal Properties. Tabulated Design Values; ISO: Geneva, Switzerland, 2000. otwiera się w nowej karcie
  32. PN-EN ISO 6946:2017. Building Components and Building Elements. Thermal Resistance and Thermal Transmittance. Calculation Methods; ISO: Geneva, Switzerland, 2017. otwiera się w nowej karcie
  33. PN-EN 12831-1:2017. Energy Performance of Buildings. Method for Calculation of the Design Heat Load. Space Heating Load, Module M3-3; ISO: Geneva, Switzerland, 2017. otwiera się w nowej karcie
  34. Mostafa, K.G.; Montemagno, C.; Qureshi, A.J. Strength to cost ratio analysis of FDM Nylon 12 3D Printed Parts. Procedia Manuf. 2018, 26, 753-762. doi.org/10.1016/j.promfg.2018.07.086. otwiera się w nowej karcie
  35. Khosravani, M.R.; Nasiri, S.; Weinberg, K. Application of case-based reasoning in a fault detection system on production of drippers. Appl. Soft Comput. 2019, 75, 227-232, doi.org/10.1016/j.asoc.2018.11.017. otwiera się w nowej karcie
  36. Leśniak, A.; Zima, K. Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability 2018, 10, 1608. doi:10.3390/su10051608. otwiera się w nowej karcie
  37. Resolution of the Minister of Infrastructure of May 18, 2004 on determining the methods and grounds for preparing an investor's cost estimate, calculating planned costs of design works and planned costs of construction works specified in the functional and utility program. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20041301389 (accessed on 3 November 2019). otwiera się w nowej karcie
  38. Grzyl, B.; Kristowski, A. A calculation proposal of labour time input when concreting in difficult atmospheric conditions. Czas. Tech. 2014, 2014, 203-208.
  39. Ośrodek Wdrożeń Ekonomiczno-Organizacyjnych Budownictwa PROMOCJA Sp. z o.o. Bulletin of prices for investment construction works, III term 2019. OWEOB Promotion Sp.z o.o.: Warszawa, Poland, 2019. 40. Wacetob. Katalog nakładów rzeczowych nr 2-02. Wacetob: Warszawa, Poland, 2017.
  40. Leśniak, A.; Plebankiewicz, E.; Zima, K. Cost calculation of building structures and building works in Polish conditions. Eng. Manag. Res. 2012, 1, 72-81. otwiera się w nowej karcie
  41. Grzyl, B.; Siemaszko, A. The Life Cycle Assessment and Life Cycle Cost in public works contracts. E3S Web Conf. 2018, 44, 00047. doi:10.1051/e3sconf/20184400047. otwiera się w nowej karcie
  42. Grzyl, B.; Kristowski, A.; Jamroz, K.; Gobis, A. Methods of estimating the cost of traffic safety equipment's life cycle. MATEC Web Conf. 2017, 122, 02003. doi:10.1051/matecconf/201712202003. otwiera się w nowej karcie
  43. Grzyl, B.; Miszewska-Urbańska, E.; Apollo, M. The life cycle cost of a building from the point of view of environmental criteria of selecting the most beneficial offer in the area of competitive tendering. E3S Web Conf. 2017, 17, 00028. doi:10.1051/e3sconf/20171700028. otwiera się w nowej karcie
  44. Kowalski, D.; Grzyl, B.; Kristowski, A. The cost analysis of corrosion protection solutions for steel components in terms of the object life cycle cost. Civ. Environ. Eng. Rep. 2017, 26, 5-13. doi:10.1515/ceer- 2017-0031. otwiera się w nowej karcie
  45. Plebankiewicz, E.; Zima, K.; Wieczorek, D. Life cycle cost modelling of buildings with consideration of the risk. Arch. Civ. Eng. 2016, 62, 149-166. doi:10.1515/ace-2015-0071. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 153 razy

Publikacje, które mogą cię zainteresować

Meta Tagi