Crowdsourcing-Based Evaluation of Automatic References Between WordNet and Wikipedia - Publikacja - MOST Wiedzy

Wyszukiwarka

Crowdsourcing-Based Evaluation of Automatic References Between WordNet and Wikipedia

Abstrakt

The paper presents an approach to build references (also called mappings) between WordNet and Wikipedia. We propose four algorithms used for automatic construction of the references. Then, based on an aggregation algorithm, we produce an initial set of mappings that has been evaluated in a cooperative way. For that purpose, we implement a system for the distribution of evaluation tasks, that have been solved by the user community. To make the tasks more attractive, we embed them into a game. Results show the initial mappings have good quality, and they have also been improved by the community. As a result, we deliver a high quality dataset of the mappings between two lexical repositories: WordNet and Wikipedia, that can be used in a wide range of NLP tasks. We also show that the framework for collaborative validation can be used in other tasks that require human judgments.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Pełna treść

pobierz publikację
pobrano 1 razy

Licencja

Copyright (World Scientific Publishing Company)

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING nr 29, wydanie 03, strony 317 - 344,
ISSN: 0218-1940
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Szymański J., Boiński T.: Crowdsourcing-Based Evaluation of Automatic References Between WordNet and Wikipedia// INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING. -Vol. 29, iss. 03 (2019), s.317-344
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1142/s0218194019500141
Źródła finansowania:
  • Działalność statussstowa

wyświetlono 7 razy

Publikacje, które mogą cię zainteresować

Meta Tagi