Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Abstrakt
3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning techniques, including Gene Expression Programming (GEP), Multi-Expression Programming (MEP), and Decision Tree (DT), to forecast the compressive strength of 3D printed fiber-reinforced concrete (3DP-FRC). The dataset comprises 299 data points with sixteen variables gathered from experimental research studies. For training the model, 70% of the dataset was used, while the remaining 30% was reserved for model testing. Several statistical metrics were utilized to evaluate the accuracy and applicability of the models. In addition, SHapley Additive exPlanations (SHAP), partial dependence plots, and individual conditional expectations approach were employed for the interpretability of the models. The proposed GEP, MEP, and DT models indicated enhanced efficacy, exhibiting correlation coefficient (R) scores of 0.996, 0.987, and 0.990, with mean absolute errors (MAE) of 1.029, 4.832, and 2.513, respectively. Overall, the established GEP model demonstrated exceptional performance compared to MEP and DT, showcasing high prediction precision in assessing the strength of 3DP-FRC. Moreover, a simple empirical formulation has been devised using GEP to predict the compressive strength, offering a simplified and efficient approach for predicting 3DP-FRC strength. The SHAP approach identified water, silica fume, fiber diameter, curing age, and loading directions as leading controlling parameters in predicting strength of 3DP-FRC. In summary, the proposed models can potentially minimize both the computational workload and the need for experimental trials in formulating the mixed design of 3D-printed concrete.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (9)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Case Studies in Construction Materials
nr 21,
ISSN: 2214-5095 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Arif M., Jan F., Rezzoug A., Afridi M. A., Luqman M., Khan W. A., Kujawa M., Alabduljabbar H., Khan M.: Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms// Case Studies in Construction Materials -,iss. 2214-5095 (2024), s.1-26
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.cscm.2024.e03935
- Źródła finansowania:
-
- Co-authors have provided APC.
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 4 razy
Publikacje, które mogą cię zainteresować
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
- T. Shafighfard,
- F. Kazemi,
- N. Asgarkhani
- + 1 autorów
A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders
- R. Kamgar,
- H. Naderpour,
- H. E. Komeleh
- + 2 autorów
Machine learning-based prediction of preplaced aggregate concrete characteristics
- F. Omidi Moaf,
- F. Kazemi,
- H. S. Abdelgader
- + 1 autorów