Abstrakt
In environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori quality information about the sensor device without using complex and resource-demanding data assimilation techniques. Both ordinary kriging and the general regression neural network (GRNN) are integrated into this attention with their learnable parameters based on deep learning architectures. We evaluate this method using three static phenomena with different complexities: a case related to a simplistic phenomenon, topography over an area of 196 km2 and to the annual hourly NO2 concentration in 2019 over the Oslo metropolitan region (1026 km2 ). We simulate networks of 100 synthetic sensor devices with six characteristics related to measurement quality and measurement spatial resolution. Generally, outcomes are promising: we significantly improve the metrics from baseline geostatistical models. Besides, distance attention using the Nadaraya–Watson kernel provides as good metrics as the attention based on the kriging system enabling the possibility to alleviate the processing cost for fusion of sparse data. The encouraging results motivate us in keeping adapting distance attention to space-time phenomena evolving in complex and isolated areas.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (8)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Environmental Data Science
nr 3,
strony 1 - 27,
ISSN: - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Lepioufle J., Schneider P., Hamer P. D., Odegard R., Vallejo I., Cao T., Taherkordi A., Wójcikowski M.: Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention// Environmental Data Science -Vol. 3,iss. e9 (2024), s.1-27
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1017/eds.2024.18
- Źródła finansowania:
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 10 razy
Publikacje, które mogą cię zainteresować
Spatial Visualization Based on Geodata Fusion Using an Autonomous Unmanned Vessel
- M. Wlodarczyk-Sielicka,
- D. Połap,
- K. Prokop
- + 2 autorów
Integration and Visualization of the Results of Hydrodynamic Models in the Maritime Network-Centric GIS of Gulf of Gdansk
- J. Pyrchla,
- M. Kowalewski,
- M. Leyk-Wesolowska
- + 1 autorów